OPC Toolbox™ 2
User’s Guide

MATLAB
SIMULINK"

‘\The MathWorks™

Accelerating the pace of engineering and science

LN N

How to Contact The MathWorks

www . mathworks.com Web

comp.soft-sys.matlab Newsgroup

www . mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports

doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)
508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.
OPC Toolbox™ User’s Guide
© COPYRIGHT 2004-2010 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program

or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used

or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www . mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

June 2004
August 2004
October 2004
March 2005
April 2005
September 2005
March 2006
September 2006
March 2007
September 2007
March 2008
October 2008
March 2009
September 2009
March 2010

Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only

New for Version 1.0 (Release 14)

Revised for Version 1.1 (Release 14+)
Revised for Version 1.1.1 (Release 14SP1)
Revised for Version 1.1.2 (Release 14SP2)
Revised for Version 2.0 (Release 14SP2+)
Revised for Version 2.0.1 (Release 14SP3)
Revised for Version 2.0.2 (Release 2006a)
Revised for Version 2.0.3 (Release 2006b)
Revised for Version 2.0.4 (Release 2007a)
Revised for Version 2.1 (Release 2007b)
Revised for Version 2.1.1 (Release 2008a)
Revised for Version 2.1.2 (Release 2008b)
Revised for Version 2.1.3 (Release 2009a)
Revised for Version 2.1.4 (Release 2009b)
Revised for Version 2.1.5 (Release 2010a)

Introduction

1

Product Overviewcciiiiiiiinennnnn.. 1-2
About OPC Toolbox Softwarecccviuuu.... 1-2
About OPC e 1-3
Understanding OPC Data Access Servers 1-4
Understanding the OPC Toolbox Object Hierarchy 1-6
How OPC Toolbox Objects Relate to OPC Servers 1-7
System Requirementscccuiiiiieenno... 1-8

Getting Command-Line Function Help 1-9

Preparing to Use OPC Toolbox Software 1-10
Introduction i 1-10
Installing the OPC Foundation Core Components 1-10
Configuring DCOM ..., 1-11
Installing the Matrikon OPC Simulation Server 1-18

Exploring Available OPC Servers 1-19
Prerequisites 1-19
Determining Server IDsfora Host 1-19

Connecting to OPC Serverscoovvvevnn.. 1-21
OVETVIEW &ttt et ettt ettt ettt e e 1-21
Creating a Client Object, 1-21
Connecting a Client to the Server 1-22
Browsing the OPC Server Name Space 1-23

Troubleshooting, 1-28
Introduction i 1-28
Unable to Find an OPC Server 1-28
“Class not registered” Error 1-29
Unable to Query the Servercvvuu.. 1-29
Unable to Connect to Serverccvvivuinnn.. 1-29
Unable to Createa Group 1-29

Error While Querying Interface 1-29

Quick Start: Using the OPC Tool GUI

2

Example: Basic OPC Toolbox Acquisition Procedure .. 2-2
OVeIVIBW o ittt ettt et e e e 2-2
Step 1: Open the OPC Tool GUI 2-3
Step 2: Locate Your OPC Server 2-4
Step 3: Create an OPC Data Access Client Object 2-6
Step 4: Connect to the OPC Server 2-10
Step 5: Create an OPC Data Access Group Object 2-12
Step 6: Browse the Server Name Space 2-13
Step 7: Add OPC Data Access Items to the Group 2-17
Step 8: View All Item Values 2-21
Step 9: Configure Group Properties for Logging 2-23
Step 10: Log OPC ServerData 2-25
Step 11: PlottheData, 2-26
Step12: Clean Up ... vii ittt i e e 2-28

Using OPC Toolbox Objects

3

Creating OPC Toolbox Objects 3-2
OVeIVIBW & it i ettt ettt e e e 3-2
Creating Data Access Group Objects 3-2
Creating Data Access Item Objects 3-5
Building an Object Hierarchy with a Disconnected

Client ..ottt e e e e e 3-8
Creating OPC Toolbox Object Vectors 3-9
Working with Public Groups 3-12

Configuring OPC Toolbox Object Properties 3-17
Purpose of Object Properties 3-17
Viewing the Values of Object Properties 3-18
Viewing the Value of a Particular Property 3-19
Getting Information About Object Properties 3-19
Setting the Value of an Object Property 3-20
Viewing a List of All Settable Object Properties 3-21

Deleting Objectsciiiitiiinnnnnnn.. 3-23

vi Contents

Saving and Loading Objects

Reading, Writing, and Logging OPC Data

4 |

Reading and WritingData
Introduction i ..
Reading Data fromanItem
Writing DatatoanItem
Reading and Writing Multiple Values

Data Change Events and Subscription
Introduction i i,
Configuring OPC Toolbox Objects for Data Change

Events

How OPC Toolbox Software Processes Data Change

Events
How to Customize the Data Change Event Response

Logging OPC Server Data
How OPC Toolbox Software Logs Data
Configuring a Logging Session
Executing a Logging Task
Getting Logged Data into the MATLAB Workspace

Working with OPC Data

5

Understanding OPC Data: Value, Quality, and
TimeStamp,
Introduction i,
The Relationship Between Value, Quality, and

TimeStamp ...
How Value, Quality, and TimeStamp Are Obtained

5-2
5-2

5-2
5-3

vii

viii

Contents

Working with Structure Formatted Data 5-8

When Structures Are Used 5-8
Example: Performing a Read Operation on Multiple
Ttems ... e 5-8
Interpreting Structure Formatted Data 5-10
When to Use Structure Formatted Data 5-13
Converting Structure Formatted Data to Array Format .. 5-13
Understanding Array Formatted Data 5-15
Array Content i, 5-15
Conversion of Logged Data to Arrays 5-16
Working with Different Data Types 5-18
Conversion Between MATLAB Data Types and COM
Variant Data Types, 5-18
Conversion of Values Written to an OPC Server 5-20
Conversion of Values Read from an OPC Server 5-20
Handling Arrays for Item Values 5-20

Using Events and Callbacks

6

Example: Using the Default Callback Function 6-2
L0 =) T 1= 6-2
Step 1: Create OPC Toolbox Group Objects 6-2
Step 2: Configure the Logging Task Properties 6-3
Step 3: Configure the Callback Properties 6-3
Step 4: Start the Logging Task 6-3
Stepb5: Clean Up ... e i 6-4

Event Types i 6-5

Retrieving Event Information 6-10
Event Structures 6-10
Example: Accessing Data in the Event Log 6-13

Creating and Executing Callback Functions 6-16
Creating Callback Functions 6-16

Specifying Callback Functions 6-18
Example: Viewing Recently Logged Data 6-20

Using the OPC Toolbox Block Library

7

OVerVIeW . e 7-2

Example: Reading and Writing Data from the Matrikon

OPC Simulation Server 7-3
L0 =) T 1= 7-3
Step 1: Open the OPC Toolbox Block Library 7-4
Step 2: Createa New Model 7-5
Step 3: Drag the OPC Toolbox Blocks into the Model 7-6
Step 4: Drag Other Blocks to Complete the Model 7-7
Step 5: Configure OPC Servers for the Model 7-9
Step 6: Specify the Block Parameter Values 7-12
Step 7: Connectthe Blocks 7-15
Step 8: Run the Simulation 7-16
Using the OPC Client Manager 7-18
Introduction i 7-18
Adding Clients to the OPC Client Manager 7-19
Removing Clients from the OPC Client Manager 7-19
Modifying the Server Timeout Value for a Client 7-20
Controlling Client/Server Connections 7-20

Function Reference

8

Object Creation and Configuration 8-2
Server Exploration 8-2
Data Accesso e 8-3

ix

OPC Data Visualization 8-3

Logging and Buffering 8-4
Simulink Support 8-4
Utilities i i e e e e 8-5

Functions — Alphabetical List

9

Property Reference

10|

OPC Data Access Client Object Properties 10-2
General Properties, 10-2
Callback Function and Event Properties 10-2
Server Connection Properties 10-3

Data Access Group Object Properties 10-4
General Properties, 10-4
Callback Function and Event Properties 10-4
Subscription and Logging Properties 10-5

Data Access Item Object Properties 10-7
General Properties, 10-7
Data Propertiesc.coiiiiiii i, 10-7

Contents

Properties — Alphabetical List

11

Block Reference

12

OPC Quality Strings

A

Major Quality 0., A-2
Quality Substatusc0iiiitiiiii . A-3
Limit Status it A-6

OPC Server Item Properties

Bl

Understanding OPC Server Item Properties B-2
OPC Specific Properties B-3
OPC Recommended Properties B-4

Index

xi

xii Contents

Introduction

¢ “Product Overview” on page 1-2

® “Getting Command-Line Function Help” on page 1-9

e “Preparing to Use OPC Toolbox Software” on page 1-10
¢ “Exploring Available OPC Servers” on page 1-19

® “Connecting to OPC Servers” on page 1-21

e “Troubleshooting” on page 1-28

Introduction

Product Overview

In this section...
“About OPC Toolbox Software” on page 1-2
“About OPC” on page 1-3

“Understanding OPC Data Access Servers” on page 1-4
“Understanding the OPC Toolbox Object Hierarchy” on page 1-6
“How OPC Toolbox Objects Relate to OPC Servers” on page 1-7

“System Requirements” on page 1-8

About OPC Toolbox Software

OPC Toolbox software is a collection of functions that extend the capability of
the MATLAB® environment, and blocks that extend the Simulink® simulation
environment. Using OPC Toolbox functions and blocks, you can acquire live
OPC data directly into MATLAB and Simulink, and write data directly to the
OPC server from MATLAB and Simulink.

OPC Toolbox software implements a hierarchical object-oriented approach
to communicating with OPC servers using the OPC Data Access Standard.
Using toolbox functions, you create an OPC Data Access Client object (opcda
client object) that represents the connection between MATLAB and an OPC
server. Using properties of the opcda client object you can control various
aspects of the communication link, such as time out periods, connection
status, and storage of events associated with that client. “Connecting to OPC
Servers” on page 1-21 describes how to create opcda objects.

Once you establish a connection to an OPC server, you create Data Access
Group objects (dagroup objects) that represent collections of OPC Data Access
Items. You then add Data Access Item objects (daitem objects) to that group,
for monitoring server item values from the OPC server and writing values to
the OPC server. You can use the dagroup object to perform such actions as
determining how often the items in the group must be updated, executing a
MATLAB function when the server provides notification of changes in item
state, and other tasks related to the group. “Creating OPC Toolbox Objects”

Product Overview

on page 3-2 describes how to create and configure dagroup objects and add
daitem objects to a group.

The OPC Data Access Standard does not provide access to historical

data. (While the OPC Foundation has defined the Historical Data Access
specification for access to historical data, a significant number of Data Access
servers do not support this standard.) Using OPC Toolbox software, you

can log records (a list of items that have changed, and their new values)
from an OPC Data Access Server to disk or to memory, for later processing.
The logging task is controlled by the dagroup object. “Logging OPC Server
Data” on page 4-17 describes how to log data using the OPC Toolbox logging
mechanism.

To work with the data you acquire, you must bring it into the MATLAB
workspace. When the records are acquired, the toolbox stores them in a
memory buffer or on disk. The toolbox provides several ways to bring one or
more records of data into the workspace where you can analyze or visualize
the data. Chapter 5, “Working with OPC Data” describes the different data
formats and their application.

You can enhance your OPC application by using event callbacks. The toolbox
has defined certain OPC Toolbox software occurrences, such as the start of
an acquisition task, as well as OPC server initiated occurrences, such as
notification that an item’s state has changed, as events. You can associate the
execution of a particular function with a particular event. Chapter 6, “Using
Events and Callbacks” describes this process.

When working in the Simulink environment, you can use blocks from the OPC
Toolbox block library to use live OPC data as inputs to your model and update
the OPC server with your model outputs. The OPC Toolbox block library
includes the capability of running Simulink models in pseudo real time, by
slowing the simulation to match the system clock. You can prototype control
systems, provide plant simulators, and perform optimization and tuning tasks
using Simulink and the OPC Toolbox block library. Chapter 7, “Using the OPC
Toolbox Block Library” describes how to use these blocks in a Simulink model.

About OPC

Open Process Control (OPC), also known as OLE for Process Control,
1s a series of seven specifications defined by the OPC Foundation

1-3

Introduction

1-4

(http://www.opcfoundation.org) for supporting open connectivity in
industrial automation. OPC uses Microsoft® DCOM technology to provide a
communication link between OPC servers and OPC clients. OPC has been
designed to provide reliable communication of information in a process plant,
such as a petrochemical refinery, an automobile assembly line, or a paper mill.

Before you interact with OPC servers using OPC Toolbox software, you should
understand the OPC client-server relationship, how OPC servers organize
their server items, and how clients can interact with those server items.
“Understanding the OPC Toolbox Object Hierarchy” on page 1-6 explains
these concepts in detail.

Understanding OPC Data Access Servers

OPC Toolbox software is an OPC Data Access client application, capable of
connecting to any OPC Data Access compliant server. By utilizing the OPC
Foundation Data Access standard, the toolbox does not require any knowledge
about the internal configuration and operation of the OPC server. Instead,
the Data Access Standard provides the common mechanism for the server
and client to interact with each other.

An OPC Data Access Server is identified by a unique server ID. The server ID
1s unique to the computer on which the server is located. A combination of
the host name of the server computer, and the server ID of the OPC server,
provides a unique identifier for an OPC server on a network of computers.

OPC Server Name Spaces

All OPC servers are required to publish a name space, consisting of an
arrangement of the name of every server item (also known as an item ID)
associated with that server. The name space provides the internal map of
every device and location that the server is able to monitor and/or update.

The following figure shows a portion of the name space on a typical OPC
server.

http://www.opcfoundation.org

Product Overview

ServerlD

0PC Se vy Server.ID. T

23 Arealt

B Urita,

H-& Ficot

& Autohdan

—a cv

Cary Server ltem

& zp

a Ficaz

a LT
@ LToz

L@ Units

— Server Name Space

Figure 1-1: Example of OPC Server and Name Space

A server item represents a value on the OPC server that a client may be
interested in. A server item could represent a physical measurement device
(such as a temperature sensor), a particular component of a device (such as
the set-point for a controller), or a variable or storage location in a supervisory
control and data acquisition (SCADA) system. Each server item is uniquely
represented on the server by a fully qualified item ID. The fully qualified item
ID is usually made up of the path to that server item in the tree, with each
node name separated by a period character. In Figure 1-1, Example of OPC
Server and Name Space, the fully qualified item ID for the highlighted server
item might be Area01.UnitA.FICO1.PV.

Most OPC servers provide a hierarchical name space, where server items

are arranged in a tree-like structure. The tree can contain many different
categories (called branch nodes), each with one or more branches and/or leaf
nodes. A leaf node contains no other branches, and often represents a specific
server Item. The fully qualified item ID of a server item is simply the ‘path’ to
that leaf node, with a server-dependent separator.

Some OPC servers provide only a flat name space, where server items are
all arranged in one single group. You could consider a flat name space as a
name space containing only leaf nodes.

It is possible to convert a hierarchical name space into a flat name space. It

is not always possible to convert a flat name space into a hierarchical name
space.

1-5

Introduction

1-6

For information on how to obtain the name space of an OPC server, see
“Browsing the OPC Server Name Space” on page 1-23.

Understanding the OPC Toolbox Object Hierarchy

OPC Toolbox software is implemented using three basic objects, designed to
help you manage connections to servers and collections of server items. The
three objects are arranged in a specific hierarchy, shown in the following
figure.

o OPC Taolkox okjects

fEI—E opcoa Cliert

= Groupd,
(D‘ =& GroupB

&+ & preadl Units, FICOT Y
& preadl Units FICO1 SP
& Areall Units, LITO1

OPC Toolbox™ Object Hierarchy

1 OPC Data Access Client objects (opcda client objects) represent a
specific OPC client instance that can communicate with only one server.
You define the server using the Host and ServerID properties. The Host
property defines the computer on which the server is installed. The
ServerlID property defines the Program ID (ProgID) of the server, created
when the server was installed on that host. The opcda client object acts as
a container for multiple group objects, and manages the connection to the
server, communication with the server, and server name space browsing.

2 Data Access Group objects (dagroup objects) represent containers for
one or more server items (data points on the server.) A dagroup object
manages how often the items in the group must be read, whether historical
item information must be stored, and also manages creation and deletion
of items. Groups cannot exist without an opcda client object. You create
dagroup objects using the addgroup function of an opcda client object.

3 Data Access Item objects (daitem objects) represent server items. Items
are defined by an item ID, which uniquely defines that server item in
the server’s name space. A daitem object has a Value, a Quality, and a
TimeStamp, representing the information collected by the server from an

Product Overview

instrument or data point in a SCADA system. The Value, Quality, and
TimeStamp properties represent the information known to the server when
the server was last asked to access information from that instrument.

A dagroup object can only exist “within” an opcda client object. Similarly, a
daitem object can only exist within a dagroup object. You create dagroup
objects using the addgroup method of an opcda client object. You create
daitem objects using the additem method of the dagroup object.

How OPC Toolbox Objects Relate to OPC Servers

OPC Toolbox software uses objects to define the server that the client must
connect to, and the arrangement of items in groups. The following figure
shows the relationship between the OPC Toolbox objects and an OPC server.

/ (lient Computer \

MATLAB
3 /Senrer Computer (Host) \ \
0PC Toolbox o 0P Server myServer.ID. L/
M-file Functions P s
o opeda object B2 areat
- initiates connection B2 Unita,
: L ~ to Server & Ficot
OPC Toolbox Engine ° & atomtan
#\ 0PC Taaox biecty, ¥ :2 p\\:
L oo Cierl) -t & sp
FoUpA, —— - & FICo2
= Grogal el . . .
ooy [] daem ot S
& Areant UMA FICO 5P link to a Server ltem| L& uritg
&1 Areall Units LITO1
0P(Data Access OPC Data Acess
(OM/DCOM
\ COM/DCOM Y, \L / | /
l Network [

Figure 1-2: Relationship Between OPC Toolbox™ Objects and OPC Server

Introduction

1-8

The opcda client object establishes the connection between OPC Toolbox
software and the OPC server, using OPC Data Access Specification standards.
The standards are based on Microsoft COM/DCOM interoperability standards.

The daitem objects represent specific server items. Note that a client typically
requires only a subset of the entire name space of a server in order to operate
effectively. In Figure 1-2, Relationship Between OPC Toolbox™ Objects and
OPC Server only the PV and SP items of FICO1, and the LITO1 item, are
required for that particular group. Another group may only contain a single
daitem object, representing a single server item.

Note The dagroup object has no equivalent on the OPC server. However,
the server keeps a record of each group that a client has created, and uses
that group name to communicate to the client information about the items in
that group.

System Requirements

OPC Toolbox software provides the Data Access client capabilities from within
MATLAB. To use this toolbox functionality, you need access to an OPC server
that supports the Data Access Specification version 2.05. In addition, you will
need to ensure that you are able to connect to those OPC servers from the
computer on which the toolbox software is installed. For more information on
how to configure the client and server computers so that you can connect to an
OPC server, see “Preparing to Use OPC Toolbox Software” on page 1-10.

Getting Command-Line Function Help

Getting Command-Line Function Help

To get command-line function help, you can use the MATLAB help function.
For example, to get help for the opcserverinfo function, type

help opcserverinfo

However, OPC Toolbox software provides “overloaded” versions of several
MATLAB functions. That is, it provides toolbox-specific implementations of
these functions using the same function name.

For example, the toolbox provides an overloaded version of the isvalid
function. If you type

help isvalid

you get help for the MATLAB Timer object version of this function. You can
determine if a function is overloaded by examining the last section of the help.
For isvalid, the help contains the following overloaded versions (not all

are shown).

Overloaded methods
help serial/isvalid.m
help instrument/isvalid.m.

help opcroot/isvalid.m

To obtain help on the toolbox version of this function, type

help opcroot/isvalid

To avoid having to specify which overloaded version you want to view, use
the opchelp function.

opchelp isvalid

You can also use this function to get help on OPC Toolbox object properties.

1-9

1-10

Preparing to Use OPC Toolbox Software

In this section...

“Introduction” on page 1-10
“Installing the OPC Foundation Core Components” on page 1-10
“Configuring DCOM” on page 1-11

“Installing the Matrikon OPC Simulation Server” on page 1-18

Introduction

Before you can communicate with OPC servers on your network, you need to
prepare your workstation (and possibly the OPC server host computer) to use
the technologies on which OPC Toolbox software is built. These technologies,
described in “About OPC” on page 1-3, allow you to browse for and connect to
OPC servers on your network, and allow those OPC servers to interact with
your MATLAB session using OPC Toolbox software.

The specific steps are described in the following sections.

Installing the OPC Foundation Core Components

The OPC Foundation has provided a set of tools for browsing other computers
on your network for OPC servers, and for communicating with the OPC
servers. These tools are called the OPC Foundation Core Components, and
are shipped with OPC Toolbox software.

To install the OPC Foundation Core Components, you use the opcregister
function. You can also use the opcregister function to remove or repair the
OPC Foundation Core Components installation.

Installing, repairing, and removing the OPC Foundation Core Components
follows the same steps:

1 If you are repairing or removing the OPC Foundation Core Components,
make sure that you do not have any OPC Toolbox objects in memory. Use
the opcreset function to clear all objects from memory.

opcreset;

Preparing to Use OPC Toolbox™ Software

2 Run opcregister with the action you would like to perform. If you do
not supply an option, the function assumes that you want to install the
components. Otherwise, use 'repair' to repair an installation (reinstall
the files), or 'remove' to remove the components.

opcregister('install’)

3 You will be prompted to type Yes to confirm the action you want to
perform. You must type Yes exactly as shown, without any quotes. This
confirmation question is used to ensure that you acknowledge the action
that 1s about to take place.

4 The OPC Foundation Core Components will be installed, repaired, or
removed from your system.

5 If you receive a warning about having to reboot your computer, you must
quit MATLAB and restart your computer for the changes to take effect.

Configuring DCOM

DCOM is a client-server based architecture for enabling communication
between two applications running on distributed computers. The OPC

Data Access Specification utilizes DCOM for communication between the
OPC client (for example, OPC Toolbox software) and the OPC server. To
successfully use DCOM, those two computers must share a common security
configuration so that the two applications are granted the necessary rights to
communicate with each other.

This section describes two typical DCOM configuration options to allow OPC
Toolbox software to work. Other DCOM options might provide sufficient
permissions for the toolbox to work with an OPC server; the options described
here are known to work with tested vendors’ OPC servers.

There are two configuration types described in this section:

® “Configuring DCOM to Use Named User Security” on page 1-12 describes
how to provide security between the client and server negotiated on
a dedicated named user basis. You do not have to be logged in as the
named user in order to use this mechanism; all communications between
the client and the server are performed using the dedicated named user,
independently of the user making the OPC requests. However, the identity

1-11

Introduction

1-12

used to run the OPC server must be available on the client machine, and
the password of that identity must match on both machines.

® “Configuring DCOM to Use No Security” on page 1-17 describes a
configuration that provides no security between the client and server. Use
this option only if you are connecting to an OPC server on a dedicated,
private network. This configuration option has been known to cause some
Microsoft Windows® services to fail.

You should use the named user configuration, unless your system
administrator indicates that no security is required for OPC access.

Caution If your OPC server software comes with DCOM setup guidelines,
you should follow the instructions provided by the OPC server vendor. The
guidelines provided in this section are generic and may not suit your specific
network and security model.

Note The following instructions apply to the Microsoft Windows XP operating
system with Service Pack 2. Users of other Microsoft Windows operating
systems should be able to adapt these instructions to configure DCOM on
their systems.

Configuring DCOM to Use Named User Security

To configure DCOM to use named user security, you will have to ensure
that both the server machine and client machine have a common user who
is granted DCOM access rights on both the server and client machines. You
should consult the following sections for information on configuring each
machine:

® “OPC Server Machine Configuration” on page 1-13 provides the steps that
you must perform on each of the machines providing OPC servers.

¢ “Client Machine Configuration” on page 1-14 provides the steps that you
must perform on the machine that will run MATLAB and OPC Toolbox
software.

Preparing to Use OPC Toolbox™ Software

OPC Server Machine Configuration. On the machines hosting the OPC
servers, perform the following steps:

1 Create a new local user. (You can also create a domain user if the server
and client machines are part of the same domain.) The name used in these
Instructions is opc but you can choose any name, as long as you remain
consistent throughout these instructions.

2 Select Start > Settings > Control Panel. Double-click Administrative
Tools and then double-click Component Services. The Component
Services dialog appears.

3 Browse to Component Services > Computers > My Computer > DCOM
Config.

4 Locate your OPC server in the DCOM Config list. The example below shows
the Matrikon™ OPC Server for Simulation.

Component Services
@ File Action View Window Help
& = [Bm| X B2 1] k] = 5

23 Console Root | DCOM Config 99 objeck(s)
EI@- Component Services % | ogical Disk Manager Administrative Service
: E|[:| Computers % ogical Disk Manager Remote Client

E@ My Computer 15, Matlab. Application (Version 7.0)

B#-[[] COM+ Applications 1%, Matlab, Application.Single (Version 7.0)

#23 DCOM Config i ver for Simulation and Testing
|23 Distributed Transaction C |, Media Player i
; 5[] Running Processes 8 Microsoft Agent Server 2.0
: Ewvent Viewer (Local)
% Services (Local)

¥ Microsoft Help and Suppert Services

15 Microsoft IMAPI

1, Microsoft WEBEM Active Scripting Event Consumer Provider
¥ Microsoft WEBEM Unsecured Apartment

iy = e B b LR N Wy T P

I Vs, TWVIET W, W W L |

5 Right-click the OPC server object, and choose Properties.
6 In the General tab, ensure that the Authentication Level is set to Default.

7 In the Security tab, choose Customize for the Launch and Activation
Permissions, then click Edit. Ensure that the opc user is granted local
Launch and Activation permissions.

1-13

1 Introduction

8 In the Security tab, choose Customize for the Access Permissions, then
click Edit. Ensure that the opc user is granted local Access permissions.

9 In the Identity tab, select This user and type the name and password
for the opc user (created in step 1).

10 If the OPC server runs as a service, make sure that the service runs as the
opc user (created in step 1) and not as the system account.

11 Repeat steps 4 through 10 for each of the servers you want to connect to.

Client Machine Configuration. On the machine(s) that will be running
MATLAB and OPC Toolbox software, perform the following steps:

1 On the client machine(s), create the identical local user with the same
name and password permissions as you set up in step 1 of “OPC Server
Machine Configuration” on page 1-13.

2 Select Start > Settings > Control Panel. Double-click Administrative
Tools and then double-click Component Services. The Component
Services dialog appears.

3 Browse to Component Services > Computers > My Computer. Click
Configure My Computer in the Component Services toolbar as shown below.

i -l =lol x|
@ File Action View Window Help |_|ﬁ'|i|

e | AmXEE2 0 sk ==

.1 Console Root Iy Computer 4 objeck{s)

T Confi My Ci el
EI@ Companent Services e
00 conputers i @

: -5 r-‘l-g,- L,.:.rnputr COM+ DCOMConfig Distributed Runining
" Event Viewer (Local) Applications Transacti... Processes
- Services (Local)

1-14

Preparing to Use OPC Toolbox™ Software

4 Click the Default Properties tab, and ensure that Enable Distributed
COM 1is checked, and that the Default Authentication Level is set to
Connect and the Default Impersonation Level is set to Identify.

Defaut Protocols | MSDTC | COM Securty |
General I Options Default Properties

v iEnable Distibuted COM on this computer:

[T Enable COM Irtemet Services on this computer

— Default Distrbuted COM Communication Properties
The Authentication Level specifies security at the packet level.

Default Authentication Level:

Connect j

The impersonation level specifies whether applications can determine
whao is calling them, and whether the application can do operations
using the cliert’s identity.

Default Impersonation Level:

[1dentfy =]

Securty for reference tracking can be provided if authentication is used
and that the default impersonation level is not anomymaous.

[Provide additional security for reference tracking

QK I Cancel Smply

1-15

1 Introduction

5 Click the COM Security tab.

General I Options I Default Properties |
Defaut Protocols | MSDTC COM Security

— Access Pemissions

You may edit who is allowed default access to applications. You may
also set limits on applications that detemmine their own pemissions.

Edit Limits...

— Launch and Activation Pemissions

You may edit who is allowed by default to launch applications or
activate objects. You may also set limits on applications that
determine their own permissions.

Edit Limits... Edit Default ...

QK Cancel Smply

6 For the Access Permissions, click Edit Default and ensure that the opc
user is included in the Default Security list, and is granted both Local
Access and Remote Access permissions.

7 For the Launch and Activation permissions, click Edit Default and ensure
that the opc user is included in the Default Security list, and is granted
all rights (Local Launch, Remote Launch, Local Activation, and Remote
Activation).

1-16

Preparing to Use OPC Toolbox™ Software

Your local client machine and server applications are now configured to use
the same username when the server attempts to establish a connection back
to the client.

Configuring DCOM to Use No Security

Caution You should not use this option if you are not in a completely trusted
network. Turning off DCOM security means that any user on the network can
launch any COM object on your local machine. Consult with your network
administrator before following these instructions.

You must complete the following steps on both the client and server machines.

1 Select Start > Settings > Control Panel. Double-click Administrative
Tools and then double-click Component Services. The Component
Services dialog appears.

2 Browse to Component Services > Computers > My Computer. Click
the Configure My Computer button in the Component Services toolbar.

3 In the Default Properties tab, make sure that Enable Distributed COM
On This Computer is selected. Select None as the Default Authentication
Level, and Anonymous as the Default Impersonation Level.

4 In the COM Security tab, select Edit Limits from the Access Permissions
and ensure that Everyone and ANONYMOUS LOGON are both granted Local
Access and Remote Access.

5 In the COM Security tab, select Edit Limits from the Launch and
Activation Permissions and ensure that Everyone and ANONYMOUS LOGON
are both granted Local and Remote permissions (Local Launch, Remote
Launch, Local Activation and Remote Activation).

Both the client and the server are now configured so that anybody can access
any COM object on either machine.

1-17

1 Introduction

Caution This configuration is potentially dangerous in terms of security, and
1s recommended for debugging purposes only.

Installing the Matrikon OPC Simulation Server

All examples in this guide and in the OPC Toolbox online help make use of a
Matrikon demonstration server that you can download free of charge from:

http://www.matrikonopc.com

On that page, select Downloads > Product Software, then select
MatrikonOPC Simulation Server Download.

Note You do not have to install the Matrikon OPC Simulation Server to
enable any functionality of OPC Toolbox software. The Simulation Server is
used purely for demonstrating the capabilities and syntax of OPC Toolbox
commands, and for providing fully working example code.

To install the Matrikon OPC Simulation Server, follow the installation
instructions with the software. When prompted for a server ID,

use the standard server ID assigned to the Simulation Server
('Matrikon.OPC.Simulation').

1-18

http://www.matrikonopc.com

Exploring Available OPC Servers

Exploring Available OPC Servers

In this section...

“Prerequisites” on page 1-19

“Determining Server IDs for a Host” on page 1-19

Prerequisites

To interact with an OPC server, OPC Toolbox software needs two pieces of
information:

® The hostname of the computer on which the OPC server has been installed.
Typically the hostname is a descriptive term (such as 'plantserver') or
an IP address (such as 192.168.2.205).

e The server ID of the server you want to access on that host. Because a single
computer can host more than one OPC server, each OPC server installed
on that computer is given a unique ID during the installation process.

Your network administrator will be able to provide you with the hostnames
for all computers providing OPC servers on your network. You may also
obtain a list of server IDs for each host on your network, or you can use the
toolbox function opcserverinfo to access server IDs from a host, as described
in the following section.

Determining Server IDs for a Host

When an OPC server is installed, a unique server ID must be assigned to that
OPC server. The server ID provides a unique name for a particular instance
of an OPC server on a host, even if multiple copies of the same server software
are installed on the same machine.

To determine the server IDs of OPC servers installed on a host, call the
opcserverinfo function, specifying the hostname as the only argument.
When called with this syntax, opcserverinfo returns a structure containing
information about all the OPC servers available on that host.

info = opcserverinfo('localhost')

1-19

1 Introduction

info =
Host: 'localhost'
ServerID: {1x4 cell}
ServerDescription: {1x4 cell}
OPCSpecification: {'DA2' 'DA2' 'DA2' 'DA2'}
ObjectConstructor: {1x4 cell}

The fields in the structure returned by opcserverinfo provide the following
information.

Server Information Returned by opcserverinfo

Field Description

Host Text string that identifies the name of the host.
Note that no name resolution is performed on an
IP address.

ServerlID Cell array containing the server IDs of all OPC

servers accessible from that host.

ServerDescription | Cell array containing descriptive text for each
server.

OPCSpecification Cell array containing the OPC Specification that the
server provides. Currently, OPC Toolbox software
supports only the 'DA2' specification.

ObjectConstructor | Cell array containing default syntax you can use to
create an OPC Data Access Client object associated
with the server. See “Creating a Client Object” on
page 1-21 for more information.

1-20

Connecting to OPC Servers

Connecting to OPC Servers

In this section...

“Overview” on page 1-21
“Creating a Client Object” on page 1-21

“Connecting a Client to the Server” on page 1-22

“Browsing the OPC Server Name Space” on page 1-23

Overview

After you get information about your OPC servers, described in “Exploring
Available OPC Servers” on page 1-19, you can establish a connection to the
server by creating an OPC Data Access Client (opcda) object and connecting
that client to the server. These steps are described in the following sections.

Note To run the sample code in the following examples, you must have

the Matrikon OPC Simulation Server available on your local machine. For
information on installing this, see “Installing the Matrikon OPC Simulation
Server” on page 1-18. The code requires only minor changes work with other
servers.

Creating a Client Object

To create an opcda object, call the opcda function specifying the hostname,
and server ID. You retrieved this information using the opcserverinfo
function (described in “Exploring Available OPC Servers” on page 1-19).

This example creates an opcda object to represent the connection to a
Matrikon OPC Simulation Server. The opcserverinfo function includes the

default opcda syntax in the ObjectConstructor field.

da = opcda('localhost', 'Matrikon.OPC.Simulation.1');

1-21

Introduction

1-22

Viewing a Summary of a Client Object

To view a summary of the characteristics of the opcda object you created,
enter the variable name you assigned to the object at the command prompt.
For example, this is the summary for the object da.

da
da =
summary of OPC Data Access Client Object: localhost/Matrikon.OPC.Simulation.i
Server Farameters
Host ¢ localhost
ServerID : Matrikeon .OPC,Simulation.d
Status : disconnected
Timeout 110 seconds
{:) Object Parameters
Group ! 0-by-1 dagroup object

Event Log : 0 of 1000 events

The items in this list correspond to the numbered elements in the object
summary:

1 The title of the Summary includes the name of the opcda client object. The
default name for a client object is made up of the 'host/serverID'. You
can change the name of a client object using the set function, described in
“Configuring OPC Toolbox Object Properties” on page 3-17.

2 The Server Parameters provide information on the OPC server that
the client is associated with. The host name, server ID, and connection
status are provided in this section. You connect to an OPC server using
the connect function, described in “Connecting a Client to the Server”
on page 1-22.

3 The Object Parameters section contains information on the OPC Data
Access Group (dagroup) objects configured on this client. You use group
objects to contain collections of items. Creating group objects is described
in “Creating Data Access Group Objects” on page 3-2.

Connecting a Client to the Server

You connect a client to the server using the connect function.

connect(da);

Connecting to OPC Servers

Once you have connected to the server, the Status information in the client
summary display will change from 'disconnected' to 'connected'.

If the client could not connect to the server for some reason (for example, if the
OPC server is shut down) an error message will be generated. For information

on troubleshooting connections to an OPC server, see “Troubleshooting” on
page 1-28.

Once you have connected the client to the server, you can perform the
following tasks:

® Get diagnostic information about the OPC server, such as the server status,

last update time, and supported interfaces. You use the opcserverinfo
function to obtain this information. See opcserverinfo in the function
reference for more information.

® Browse the OPC server name space for information on the available server
items. See “Browsing the OPC Server Name Space” on page 1-23 for details

on browsing the server name space.

® Create group and item objects to interact with OPC server data. See
“Creating OPC Toolbox Objects” on page 3-2 for information on creating
group and item objects.

Browsing the OPC Server Name Space

A connected client object allows you to interact with the OPC server to obtain

information about the name space of that server. The server name space
provides access to all the data points provided by the OPC server by naming
each of the data points with a server item, and then arranging those server

items into a name space that provides a unique identifier for each server item.

This section describes how you use a connected client object to browse the

name space and find information about each server item. These activities are

described in the following sections:

® “Getting the Server Name Space” on page 1-24 describes how to obtain a

server name space, or a partial server name space, using the getnamespace

and serveritems functions.

® “Getting Information about a Specific Server Item” on page 1-26 describes
how to query the server for the properties of a specific server item.

1-23

1 Introduction

Getting the Server Name Space

You use the getnamespace function to retrieve the name space from an OPC
server. You must specify the client object that is connected to the server you
are interested in. The name space is returned to you as a structure array
containing information about each node in the name space.

The example below retrieves the name space of the Matrikon OPC Simulation
Server installed on the local host.

da = opcda('localhost', 'Matrikon.OPC.Simulation.1');
connect(da);
ns = getnamespace(da)

ns =
3x1 struct array with fields:
Name
FullyQualifiedID
NodeType
Nodes

The fields of the structure are described in the following table.

Field Description

Name The name of the node, as a string.

FullyQualifiedID | The fully qualified item ID of the node, as a string. The
fully qualified item ID is made up of the path to the
node, concatenated with '.' characters. You use the
fully qualified item ID when creating an item object
associated with this node.

NodeType The type of node. NodeType can be 'branch' (contains
other nodes) or 'leaf' (contains no other branches).

Nodes Child nodes. Nodes is a structure array with the same
fields as ns, representing the nodes contained in this
branch of the name space.

From the example above, exploring the name space shows.

ns(1)

1-24

Connecting to OPC Servers

ans =
Name: 'Simulation Items'
FullyQualifiedID: 'Simulation Items'
NodeType: 'branch'’
Nodes: [8x1 struct]
ns(3)
ans =
Name: 'Clients’
FullyQualifiedID: 'Clients’
NodeType: 'leaf’
Nodes: []

From the information above, the first node is a branch node called
'Simulation Items'. Since it is a branch node, it is most likely not a valid
server item. The third node is a leaf node (containing no other nodes) with a
fully qualified ID of 'Clients'. Since this node is a leaf node, it is most likely
a server item that can be monitored by creating an item object.

To examine the nodes further down the tree, you need to reference the Nodes
field of a branch node. For example, the first node contained within the
'Simulation Items' node is obtained as follows.

ns(1).Nodes(1)

ans =
Name: 'Bucket Brigade'
FullyQualifiedID: 'Bucket Brigade.'
NodeType: 'branch'
Nodes: [14x1 struct]

The returned result shows that the first node of 'Simulation Items' is a
branch node named 'Bucket Brigade', and contains 14 nodes.

ns(1).Nodes(1).Nodes(9)

ans =
'Reals’
'Bucket Brigade.Real8'

Name:
FullyQualifiedID:

1-25

1 Introduction

NodeType: 'leaf’
Nodes: []

The ninth node in 'Bucket Brigade' is named 'Real8' and has a fully
qualified ID of 'Bucket Brigade.Real8'. You use the fully qualified ID
to refer to that specific node in the server name space when creating items
with OPC Toolbox software.

You can use the flatnamespace function to flatten a hierarchical name space.

Getting Information about a Specific Server ltem

In addition to publishing a name space to all clients, an OPC server provides
information about the properties of each of the server items in the name
space. These properties provide information on the data format used by the
server to store the server item value, a description of the server item, and
additional properties configured when the server item was created. The
additional properties may include information on the range of the server item,
the maximum rate at which the server can update that server item value, etc.

You access a property using a defined set of property IDs. A property ID is
simply a number that defines a specific property of the server item. Property
IDs are divided into three categories:

e OPC Specific Properties (1-99) that every OPC server must provide.
The OPC Specific Properties include the server item’s Value, Quality,
and Timestamp. See “Understanding OPC Data: Value, Quality, and
TimeStamp” on page 5-2 for more information on understanding OPC data.

¢ OPC Recommended Properties (100-4999) that OPC servers can provide.
These properties include maximum and minimum values, a description of
the server item, and other commonly used properties. See Appendix B,
“OPC Server Item Properties” for more information on OPC Recommended
Properties.

® Vendor Specific Properties (5000 and higher) that an OPC server can
define and use. These properties may be different for each OPC server,
and provide a space for OPC server manufacturers to define their own
properties.

1-26

Connecting to OPC Servers

You query a server item’s properties using the serveritemprops function,
specifying the client object, the fully qualified item ID of the server item you
are interested in, and an optional vector of property IDs that you wish to
retrieve. If you do not specify the property IDs, all properties defined for
that server item are returned to you.

Note You obtain the fully qualified item ID from the server using the
getnamespace function or the serveritems function, which simply returns all
fully qualified item IDs in a cell array of strings. See the function reference
for more information on the serveritems function.

The following example queries the Item Description property (ID 101) of the
server item 'Bucket Brigade.ArrayOfReal8' from the example in “Getting
the Server Name Space” on page 1-24.

p serveritemprops(da, 'Bucket Brigade.ArrayOfReal8', 101)
p:
PropID: 101
PropDescription: 'Item Description'
PropValue: 'Bucket brigade item.'

For a list of OPC Foundation property IDs, see Appendix B, “OPC Server
Item Properties”.

1-27

Introduction

1-28

Troubleshooting

In this section...

“Introduction” on page 1-28

“Unable to Find an OPC Server” on page 1-28
““Class not registered” Error” on page 1-29
“Unable to Query the Server” on page 1-29
“Unable to Connect to Server” on page 1-29
“Unable to Create a Group” on page 1-29
“Error While Querying Interface” on page 1-29

Introduction

If you are unable to establish a connection to an OPC server, the following
sections might help you to identify problems with installation and
configuration that could be preventing you from successfully querying and
connecting to OPC servers.

Most problems with connecting to an OPC server relate to the DCOM settings
on either the host or the client machine. For information on configuring
DCOM, see “Configuring DCOM” on page 1-11.

Unable to Find an OPC Server

First, check that you are able to communicate with the host from your client.
You can test this by attempting to run a Command Prompt and using the
'ping' command on the host. Alternatively, try to browse to the host using
the Network Neighborhood.

If you are able to communicate with the host, but you are unable to find an
OPC server (using the opcserverinfo command) on that host, then the OPC
Foundation Core Components may have to be reinstalled on your workstation.
You can run the opcregister function to repair your OPC Foundation Core
Components installation. For more information see “Installing the OPC
Foundation Core Components” on page 1-10.

Troubleshooting

“Class not registered” Error

If you get this error while attempting to query a server using opcserverinfo,
or when attempting to add a host in the OPC Tool GUI, the OPC Foundation
Core Components have not been installed correctly. Install the OPC
Foundation Core Components, as described in “Installing the OPC Foundation
Core Components” on page 1-10.

Unable to Query the Server

If you are unable to query the server using opcserverinfo, the most common
cause is incorrectly configured local DCOM security settings. Review the
section on “Configuring DCOM” on page 1-11.

Unable to Connect to Server

An inability to connect to the OPC server usually indicates that the security
model on the server is not allowing you to make an initial connection. Check
the DCOM configuration on the server, and review the section on “Configuring
DCOM” on page 1-11.

Unable to Create a Group

If you are able to connect to the server but cannot create a group, the most
common cause is incorrectly configured local DCOM security settings. Review
the section on “Configuring DCOM” on page 1-11.

Error While Querying Interface
If you get this error while attempting to add a group to a connected client
object,

Error occurred while querying interface: IID_IOPCDataCallback

your local DCOM security settings are not permitting the OPC server to
connect to the OPC Toolbox software client on the local machine. Review the
section on “Configuring DCOM” on page 1-11.

1-29

1 Introduction

1-30

Quick Start: Using the OPC
Tool GUI

The best way to learn about the capabilities of OPC Toolbox software is to
look at a simple example. This chapter illustrates the basic steps required
to log data from an OPC server for analysis and visualization. The example
uses OPC Tool, a graphical user interface (GUI) provided in the toolbox, to
demonstrate the process, and includes information on how to achieve the
same results from the command line.

This chapter contains cross-references to other sections in the documentation
that provide more in-depth discussions of the relevant concepts.

2 Quick Start: Using the OPC Tool GUI

Example: Basic OPC Toolbox Acquisition Procedure

In this section...

“Overview” on page 2-2

“Step 1: Open the OPC Tool GUI” on page 2-3

“Step 2: Locate Your OPC Server” on page 2-4

“Step 3: Create an OPC Data Access Client Object” on page 2-6
“Step 4: Connect to the OPC Server” on page 2-10

“Step 5: Create an OPC Data Access Group Object” on page 2-12
“Step 6: Browse the Server Name Space” on page 2-13

“Step 7: Add OPC Data Access Items to the Group” on page 2-17
“Step 8: View All Item Values” on page 2-21

“Step 9: Configure Group Properties for Logging” on page 2-23
“Step 10: Log OPC Server Data” on page 2-25

“Step 11: Plot the Data” on page 2-26

“Step 12: Clean Up” on page 2-28

Overview

This section illustrates the basic steps required to create an OPC Toolbox
application by visualizing the Triangle Wave and Saw-toothed Wave signals
provided with the Matrikon OPC Simulation Server. The application logs
data to memory and plots that data, highlighting uncertain or bad data
points. By visualizing the data you can more clearly see the relationships
between the signals.

Note To run the sample code in the following examples, you must have
the Matrikon OPC Simulation Server available on your local machine. For
information on installing this, see “Installing the Matrikon OPC Simulation
Server” on page 1-18. The code requires only minor changes to work with
other servers.

Example: Basic OPC Toolbox™ Acquisition Procedure

Hosts and OPC
Servers pane

Select between
0P(Servers
and Namespace

The example in this chapter uses the OPC Tool GUI. However, each step
contains information on how to complete that step using command-line
code. The entire example is contained in the demonstration file
opcdemo_quickstart.

Step 1: Open the OPC Tool GUI
To open the OPC Tool GUI, type opctool at the MATLAB prompt.

The GUI is displayed with no hosts, servers, or toolbox objects created. The
following figure shows the main components of the OPC Tool GUI.

0PC Toolbox Object Properties
Objects pane pane

([J—

<} DPC Tool - [U ititled.osf] i] [
File Host Ser Client Group Ifem Help
4
g
- — =
B = & & a X £ # ¥ |MaTLABOPC Clients
=M properies=
=Mo properties=
| OPC Servers | Mamespace
Ready S

OPC Tool Graphical User Interface

In the following steps, you will fill each of the panes with information required
to log data, and you will log the data, by creating and interacting with OPC
Toolbox objects.

2 Quick Start: Using the OPC Tool GUI

Command-Line Equivalent

Since this step simply opens the OPC Tool GUI, there is no equivalent
function when using the command line.

Step 2: Locate Your OPC Server

In this step, you obtain two pieces of information that the toolbox needs

to uniquely identify the OPC server that you want to access. You use this
information when you create an OPC Data Access Client object (opcda client
object), described in “Step 3: Create an OPC Data Access Client Object” on
page 2-6.

The first piece of information that you require is the hostname of the server
computer. The hostname (a descriptive name like "PlantServer" or an IP
address such as 192.168.16.32) qualifies that computer on the network, and
is used by the OPC Data Access protocols to determine the available OPC
servers on that computer, and to communicate with the computer to establish
a connection to the server. In any OPC Toolbox application, you must know
the name of the OPC server’s host, so that a connection with that host can be
established. Your network administrator will be able to provide you with a
list of hostnames that provide OPC servers on your network. In this example,
you will use localhost as the hostname, because you will connect to the OPC
server on the same machine as the client.

The second piece of information that you require is the OPC server’s server
ID. Each OPC server on a particular host is identified by a unique server ID
(also called the Program ID or ProgID), which is allocated to that server on
installation. The server ID is a text string, usually containing periods.

Although your network administrator will be able to provide you with a list of
server 1Ds for a particular host, you can query the host for all available OPC
servers. “Exploring Available OPC Servers” on page 1-19 discusses how to
query hosts from the command line.

Using the OPC Tool GUI you can browse a host using the following steps:

1 In the Hosts and OPC Servers pane, click the Add host icon to open
the Host name dialog, shown below.

Example: Basic OPC Toolbox™ Acquisition Procedure

“}. DPC Tool
File Haost Server Clie) Host name x|

dick

Add Host Button and Resulting Host Name Dialog

2 In the Host name dialog, enter the name of the host. In this case, you can
use the "localhost" alias.

localhost

Click OK. The hostname will be added to the OPC Network tree view,
and the OPC servers installed on that host will automatically be found
and added to the tree view. Your Hosts and OPC Servers pane should
look similar to the one shown below.

<). OPC Tool - [Untitled.osf*] _ﬁ':' Add host

File Host Server Client Group Ikem Help
B =X Dekte host

Update

Create client

h Y

o d | E]

PC Metwark

=

Lo 1)

{ OPC Servers | MNamespace I

-:g' localhost ,
B £ icomics Simuistor 1 View name space
OPC Serve rsmmmm— 2 Watrikon.OPC Simulation 1 by
Softing OPCTaolkoxDema_ServerDA.1 P
on I.Dsi L a oftng oalpoxDemo_server 2
H t |1' Property “alue I ;
05 PFOPC 1es Hosthame localhost r
(when host m— |l aress 127001 }
Er vy zable ol
se|ecled) & Servers i} j
4
4

Ready

Example of Hosts and OPC Servers Pane

Note that the local host in this example provides three OPC servers. The
Server ID for this example is 'Matrikon.0OPC.Simulation.1'.

2-5

2 Quick Start: Using the OPC Tool GUI

2-6

Command-Line Equivalent
The command-line equivalent for this step uses the function opcserverinfo.

hostInfo = opcserverinfo('localhost')

hostInfo
Host: 'localhost'
ServerID: {1x3 cell}
ServerDescription: {1x3 cell}
OPCSpecification: {'DA2' 'DA2' 'DA2'}
ObjectConstructor: {1x3 cell}

Examining the returned structure in more detail provides the server IDs of
each OPC server.

allServers = hostInfo.ServerID'

allServers
'Matrikon.OPC.Simulation.1'
"ICONICS.Simulator.1'
'Softing.0OPCToolboxDemo_ServerDA.1'

Step 3: Create an OPC Data Access Client Object

Once you have determined the hostname and server ID of the OPC server you
want to connect to, you can create an opcda client object. The client controls
the connection status to the server, and stores any events that take place
from that server (such as notification of data changing state, which is called a
data change event) in the event log. The opcda client object also contains any
Data Access Group objects that you create on the client. For more information
on the OPC Toolbox object hierarchy, see “Understanding the OPC Toolbox
Object Hierarchy” on page 1-6.

With the OPC Tool GUI, you can create a client directly from the Hosts and
OPC Servers pane.

Right-click the Matrikon server node and choose Create client. A client will
be created in the OPC Toolbox Objects pane, as shown in the following
figure.

Example: Basic OPC Toolbox™ Acquisition Procedure

< OPC Tool - [Untitled.osf*]
File Host Server Client Group IEem Help

g & 2| & | B iF
1528 OPC Metwark

IJ:'I—% localhost

2 iconcs Simulator 1

B Matri atioi
2 Softing.0PCToolko
Update

g & a | XS S~F
click <l MATLAB OPC Ciients
5t

s e A
Propetty | Yalue |
Hosthame |Iocalhost |
IR addressye - f"??.ﬂ.ﬂ.j’ IR } -~

Server Context Menu and Client Node

The name of the client (displayed in the OPC Toolbox Objects pane) is
Host/ServerID, where Host is the hostname and ServerID is the Server
ID associated with that client. In this example, the client’s name is
‘localhost/Matrikon.OPC.Simulation.1'

2-7

2 Quick Start: Using the OPC Tool GUI

Once you have created the client, you can view the properties of the client
object in the Object Properties pane, as shown in the next figure.

& & & | X|2| F £ |locanostMatrikon.0PC.Simulation.1

Mame: I\D:E\hDStJMatrikDr’\ OPC Simulation 1

Tag |

| ORC Server

Server host. [localhost

Server I [Matrikon OFC Siulation.1 Selert

.

Status Discannected Connect Disconnech
rEvert Log

Mesdimum rumber of recards: 1000

Currert size: 0 recortls Updlats View Clear

[Callback function:

Mame:

Calkack: |@opecalback Open In Editor
ShutdawnFen
TimerFen Called when an error event occurs. An errar event is generated when

an asynchranous transaction fails

4

Example of OPC Toolbox Objects Pane, Showing Client Properties

Alternative Methods for Creating Clients

You can also create a client in the OPC Tool GUI by using one of the following
methods:

e Select the MATLAB OPC Clients node in the OPC Toolbox Objects
pane and click Add Client in the OPC Toolbox Objects toolbar.
® Choose Add from the Client menu.

¢ Right-click the MATLAB OPC Clients node in the OPC Toolbox Objects
tree and select Create Client.

2-8

Example: Basic OPC Toolbox™ Acquisition Procedure

If you select one of the methods described above, a dialog appears requesting
the hostname and server ID.

Click fo select
ServerlD from list
of servers on host.

<) Add client x|

Client will attempt
to connect when Server ID: Select |
creuted_-. [~ Cannect after, cresting OPEC Client

Ok | Cancel |

Add Client Dialog

When you supply a hostname, you will be able to select the Server ID

from a list, by clicking Select. Using the Add client dialog, you can also
automatically attempt to connect to the server when the client is created, by
checking Connect after creating OPC Client before clicking OK.

Command-Line Equivalent

The command-line equivalent of this step involves using the opcda function,
specifying the hostname and Server ID arguments.

da

opcda('localhost', 'Matrikon.OPC.Simulation.1')

da =
OPC Data Access Object: localhost/Matrikon.OPC.Simulation.1
Server Parameters

Host: localhost
ServerlID: Matrikon.OPC.Simulation.1
Status: disconnected
Object Parameters
Group: 0-by-1 dagroup object

For more information on creating clients, see “Creating a Client Object” on
page 1-21.

2-9

2 Quick Start: Using the OPC Tool GUI

2-10

Step 4: Connect to the OPC Server

OPC Data Access Client objects are not automatically connected to the server
when they are created. This allows you to fully configure an OPC Toolbox
object hierarchy (a client with groups and items) prior to connecting to the
server, or without a server even being present.

Note The Add Client dialog described in “Alternative Methods for Creating
Clients” on page 2-8 can connect the client to the server after creating the
client object.

To connect the client to the server, you can use the OPC Toolbox Objects
toolbar, shown in the following figure.

g Create client
& Add group
0PC Toolbox o AMditem
Objects toolbar e o X o S Q@?’ 3¢ Delete object
o Update
}Sf Connedt
ﬁ@ Disconnect

OPC Toolbox Obijects Toolbar

Click Connect in the OPC Toolbox Objects toolbar. If the client is able to
connect to the server, the icon for that client in the OPC Toolbox Objects
tree will change to show that the client is connected. If the client could not
connect to the server, an error dialog will show any error message returned.
See “Troubleshooting” on page 1-28 for information on why a client may not
be able to connect to a server.

Example: Basic OPC Toolbox™ Acquisition Procedure

When you connect an opcda client object to the server associated with that
client, the server node in the Hosts and OPC Servers pane also updates

to show that the server has a connection to a client in the GUI. With that
connection, the properties of the server are displayed in the Hosts and OPC
Servers pane. For this example, a typical view of the GUI after connecting to
a client 1s shown in the next figure.

<} OPC Tool - [Untitled.osf*]

Fle Host Server Client Group L= Help

3

£ 1conIcs Simulatar 1

& softing OPCToolhoxDemo_ServerDa1

Property Value
[Bandwidth 00
CurrentTime 2004-03-18 17:23:47
LastUpdsteTime |2004-03-18 17:23:38
PublicGroups
ServerStalus Running
OPC Server Softwareversion |1.1.307
i StertTime 2004-03-18 09:30:15
prope riies Supportedinterfaces |[OPCComman
IoPCServer
IOPCErawseServerAddres..
IConnectionPaintCortainer
ICPCltemPraperties
PersistFile
vendorinta Mtrikon Consulting Inc (7...

OFC Servers | Mamespace

Ready

4

§F & o & |k & o a | X || #|s® |iocanostmatrikan.opc.g)
OPC Network 4\ MATLAB OPC Clierts

585 locaihost] Meme: [icalnostvatrivf

Tag:)
<
~OPC Server ————4

F)
Server host: |Iocalhinst '

Server ID, Mamkuﬂ.g

Tirneout 100 &
Status CunnemeJ
~EvertLog
P

Mepdmum number of rece’

Currert size: 0 recordd

E |
Callack fund\unsq

Hame. V.

CEHhEE}
ShutciowenFon

TimerFen Called 4,
an asy

—

p

Example of Connected Client and OPC Server Properties

The OPC server properties include diagnostic information, such as the
supported OPC Data Access interfaces, the time the server was started, and

the current server status.

Command-Line Equivalent

You use the connect function to connect an opcda client object to the server

at the command line.

connect(da)

2-11

2 Quick Start: Using the OPC Tool GUI

Step 5: Create an OPC Data Access Group Object

You create Data Access Group objects (dagroup objects) to control and contain
a collection of Data Access Item objects (daitem objects). A dagroup object
controls how often the server must notify you of any changes in the item
values, control the activation status of the items in that group, and define,
start, and stop logging tasks.

To create a dagroup object, click Add group in the OPC Toolbox Objects
toolbar. A group is created and automatically named, either by the OPC
server or by OPC Toolbox software.

& & | & |5 | g | 2° |Groupo
ﬂ MATLAE OPC Clients

= E_ localhostMatrikon OPC Simulation. 1
| Groupl Mame: IGroupD

Properties | Read!\u’\l‘rﬂel Loggingl

Ta: I
[V Active

Subscription

[V Subscribed [update on data change)

UpdateRate: ID.S s Deadband: ID.D %

Time higs: 0.0 minutes

Callback functions

yhcFon

e Callback: |@opccallback Open In Editar |
DataChangeFcn

ReadisyncFon Called when when an asynchronous operation is cancelled.
RecordsdcouiredFon

WritedsyncFon

Example of OPC Data Access Group Properties Pane
On their own, dagroup objects are not useful. Once you add items to a group,

you can control those items, read values from the server for all the items in a
group, and log data for those items, using the dagroup object. In Step 6 you

2-12

Example: Basic OPC Toolbox™ Acquisition Procedure

browse the OPC server for available tags. Step 7 involves adding the items
associated with those tags to the dagroup object.

Command-Line Equivalent

To create dagroup objects from the command line, you use the addgroup
function. This example adds a group to the opcda client object already created.

grp = addgroup(da)

grp =
OPC Group Object: GroupO
Object Parameters

GroupType: private

Item: 0-by-1 daitem object

Parent: localhost/Matrikon.OPC.Simulation.1
UpdateRate: 0.5

DeadbandPercent: O
Object Status

Active: on
Subscription: on
Logging: of f
LoggingMode: memory

See “Creating Data Access Group Objects” on page 3-2 for more information
on creating group objects from the command line.

Step 6: Browse the Server Name Space

All OPC servers provide access to server items via a server name space. The
name space is an ordered list of the server items, usually arranged in a
hierarchical format for easy access. A server item (also known as a tag) is a
measurement or data point on a server, providing information from a device
(such as a pressure sensor) or from another software package that supplies
data through OPC Data Access (such as a SCADA package).

2-13

2 Quick Start: Using the OPC Tool GUI

2-14

Note If you know the item IDs of the server items you are interested in, you
can skip this section and proceed to “Step 7: Add OPC Data Access Items to
the Group” on page 2-17. In this example, assume that you do not know the
exact item IDs, although you do know that you want to log information from
the Saw-toothed Waves and Triangular Waves provided by the Matrikon
Simulation Server.

The Namespace tab of the Hosts and Servers pane allows you to graphically
browse a server’s name space. Because most OPC servers contain thousands
of server items, retrieving a name space can be time consuming. When you
connect to a server for the first time, the name space is not automatically
retrieved. You have to request the name space using one of the View buttons
in the Server Namespace toolbar, as shown in the following figure.

Server Namespace
100lb 0 m— |

"

E: View name space

e Ad ifem

& Simulation temns
& Configured Aliazes
@ Clierts

e i

Namespace Toolbar Showing View Buttons

Click View hierarchical namespace to retrieve the hierarchical name space for
the Matrikon OPC Server. A tree view containing the Matrikon name space is
shown in the pane. Your pane should look similar to the following figure.

Branch node K
(contains B, Matrikan OPC Simulation. 1
oiher I'IOdeS)—. @ Simulstion tems

‘@ Configured Aliazes
I.euf node @ Clierts

(does not
contain nodes)

=No properies=

OPC Servers Namespace I

Example of Populated Namespace Tree

Example: Basic OPC Toolbox™ Acquisition Procedure

Note If you choose to view the name space as flat, you get a single list of all
server items in the name space, expanded to their fully qualified names. A
fully qualified name can be used to create a daitem object.

Browsing the name space using the GUI also provides some property
information for each server item. The properties include the published OPC
Item properties such as Value, Quality, and Timestamp, plus additional
properties published by the OPC server that may provide more information
on that particular server item. For a list of standard OPC properties and an
explanation of their use, consult Appendix B, “OPC Server Item Properties”.

In this example, you need to locate the Saw-toothed Waves and Triangle
Waves signals in the Matrikon Simulation Server. You can achieve this using
the following steps:

1 Ensure that you are viewing the hierarchical name space.

2 Expand the Simulation items node. You will see all the signal types
that the Matrikon Server simulates.

3 Expand the Saw-toothed Waves node. A number of leaf nodes appear. A
leaf node contains no other nodes, and usually signifies a tag on an OPC
server.

2-15

2 Quick Start: Using the OPC Tool GUI

4 Select the Real8 leaf node. You will see the properties of the server item in
the properties table below the name space tree, as shown in the following

figure.
[
_I
[
o . : o [.
ltem Canonical ... |double >— ltem (EII'IOI'IiCEII
™ 15502 40452 et
[term Guality Good: Mon-specific DuiuType
ltem Timestamp (05 July 2004 02:13:50 PI'ONTW
ftem Access Ri...|read
Server ScanR... |01
[tern EUI Type 0
[tern EUInfo [
ttem Description [Random value. LI
OPC Servers Namespace I

Example of Server Tag Properties

Note the Item Canonical DataType property, which is double. The
Canonical DataType is the data type that the server uses to store the
server item’s value.

5 Select the UInt2 leaf node. You will notice that the properties update, and
the Item Canonical Datatype property for this server item is uint1e6.
(MATLAB denotes integers with the number of bits in the integer, such as
uint16; the Matrikon Server uses the COM Variant convention denoting
the number of bytes, such as UInt2.)

You can continue browsing the server name space using the Server
Namespace pane in the GUIL. One unique characteristic of the Matrikon
Simulation Server is that you can view the connected clients through the
name space, by selecting the Clients node in the root of the name space.

In Step 7, you will add three items to your newly created group object, using
the Server Namespace pane.

2-16

Example: Basic OPC Toolbox™ Acquisition Procedure

Command-Line Equivalent
From the command line, you can “browse” the server name space using the
serveritems function. You need to supply a connected opcda client object
to the serveritems function, and an optional string to limit the returned
results. The string can contain wildcard characters (*). An example of using
serveritems is as follows.

sawtoothItems =

sawtoothItems =
'Saw-toothed
'Saw-toothed
'Saw-toothed
'Saw-toothed
'Saw-toothed
'Saw-toothed
'Saw-toothed
'Saw-toothed
'Saw-toothed
'Saw-toothed

serveritems(da, '*Saw*')

Waves.
Waves.
Waves.
Waves.
Waves.
Waves.
Waves.
Waves.
Waves.
Waves.

Int1'
Int2'
Int4'
Money'
Real4'
Real8'
UIntt'
UInt2'
UInt4'

The command-line equivalent for obtaining the server item properties is
serveritemprops. See the serveritemprops reference page for more
information on using the function.

Step 7: Add OPC Data Access ltems to the Group

Now that you have found the server items in the name space, you can add
Data Access Item objects (daitem object) for those tags to the dagroup object
you created in Step 5. A daitem object is a link to a tag in the name space,
providing the tag value, and additional information on that item, such as the

Canonical Data Type.

Using the GUI, you create items directly from the name space tree, using a
context menu on each node in the tree.

Browse to Simulated Items > Saw-toothed Waves > Real8, and right-click
that node to bring up the context menu. Selecting Add to from the context
menu provides you with a list of created groups for the item associated with

2-17

2 Quick Start: Using the OPC Tool GUI

that server, and a menu item to create a New group (and add the item to
that group).

The menu displayed for this example is shown in the following figure.

4 y
L

View namespace k |
Groupd
Property “alug Mew group

ltern Canonical DataType |double |
[tem Yalue 125 6637073505001 |
T A N ynrrress———————— | N

Example of Context Menu for Namespace Node

Click Group0 to add the item to the already existing group that you created
in Step 5. A daitem object is created in the OPC Toolbox Objects pane. The
following figure shows the newly created item highlighted, with the properties
of the item shown in the Properties pane.

2-18

Example: Basic OPC Toolbox™ Acquisition Procedure

& & | = £ | g | 2° |saw-toothed Waves.Reals

L MATLAB OPC Clients

= E.', localhostMatrikon OPC Simulation. 1
E—@ Groupd

Mame: ISaw-toothed Wiaves Reald

Ta: I

[V active

MATLAE datatype: I double =~ l

~Server Assigned Propertie:

Access rights: readbwrite
Scan rate: 0ol =

Dratatype: double

Data

Walue: 197 9203391 2475992 Read |

Cuality: Good: Mon-specific

Timestamp: 055225

Wirite: | Wirite

Example of Data Access ltem Object and Properties

Reading a Value from the Server

A daitem object initially contains no information about the server item that it
represents. The daitem object only updates when the server notifies the client
of a change in status for that item (the notification is called a data change
event) or the client specifically reads a value from the server. Using the GUI,
you can force a read of the item by clicking Read in the Properties pane

of the required item.

Click Read. The Value, Quality, and Timestamp fields in the GUI will
update. Value contains the last value that the server read from that
particular item. Quality provides a measure of how meaningful Value is.
If Quality is Good, then the Value can be trusted to be the same as the
device or object to which the item refers, but only at the time provided by the
Timestamp field. If Quality is anything other than Good, then the Value
of the item is questionable.

2-19

2 Quick Start: Using the OPC Tool GUI

2-20

Each time you read or obtain data from the server through a data change
event, the server will provide you with updated Value, Quality, and
Timestamp values.

Adding More Items to the Group

Using the Namespace pane, expand the Triangle Waves node and add
items for the Real8 and UInt2 server items. You will then have three items
associated with your dagroup object. In Step 8, you configure a logging
session for that group. You then log data in Step 9 from the three items you
just created, and visualize the data in Step 10.

Command-Line Equivalent

You use the additem function to add items to a dagroup object. You need

to pass the dagroup object to which the items will be added, and the fully
qualified item ID as a string. The item IDs were found using the serveritems
function in Step 6.

itmi

additem(grp, 'Saw-toothed Waves.Real8')

itm1 =
OPC Item Object: Saw-toothed Waves.Real8
Object Parameters
Parent: GroupO
AccessRights: read/write
DataType: double
Object Status
Active: on
Data:
Value:
Quality:
Timestamp:

You can add multiple items to the group in one additem call, by specifying
multiple ItemID values in a cell array.

itms = additem(grp, {'Triangle Waves.Real8',
'Triangle Waves.UInt2'})

itms =

Example: Basic OPC Toolbox™ Acquisition Procedure

OPC Item Object Array:

Index: DataType: Active: ItemID:

1 double on Triangle Waves.Real8
2 uinti16 on Triangle Waves.UInt2

For more information on adding items to groups, see “Creating Data Access
Item Objects” on page 3-5.

Step 8: View All ltem Values

You can view the Value, Quality, and Timestamp for each item using the
item’s properties pane. However, that view only provides access to one item at
a time. The group object is designed to allow you to read and write values from
all items in the group, and to log data to memory and/or disk. You use the
Group Read/Write pane to view the values of the items you created in Step
7 to determine the approximate range of values that each item’s value varies
over. The information from this pane will help you to verify that the data is
updating, and whether you can plot the data in one set of axes or in subplots.

Click GroupO in the OPC Toolbox Objects pane. Select the Read/Write
tab in the top of the Group properties pane. The OPC Toolbox Objects
pane should now look similar to the one shown in the following figure.

2-21

Quick Start: Using the OPC Tool GUI

2-22

hmpleCode'UserDoc' Untitled.osf*] = | Ellll
1 Help
4
' n
& & o | X | % | & 2% |Groupo
—
L MATLAE OPC Clients Properties ReadWﬂ8|Logging|
= E,', localhostMatrikon OPC Simulation 1
| Groupl) ¥ Active
&1 Saw-tocthed Waves Reald e —
& Triangle Waves Reald Hbscription
verDA &1 Triangle Waves Uint2
UpdateRate: ID.S s Deadband: ID.D %
rtem data
Refresh | Wirite Clear Write I
I ftetn IC Active “alue Guality Timestamp | Wyrite Valuel
Saw-toothed Wave. . ¥ |[755398171 ... |Good: Mon-specific |04:23:06
Triangle Waves Reald| [160221226, |Good: Mon-specific [04:23:06
Triangle Waves Lnt2 W 110 Good: Mon-specific |04:23:06

Rl
[ET]

A

Control how often
L— group receives
updated values.

Group value,
— quality, and
timestamp shown.

Enter value fo

write.

Select items to be

updated and
written.

Example of Group Read/Write Pane

The Value, Quality, and Timestamp values in the table of items will
continually update as long as you have Subscription enabled. Subscription
controls whether data change events are sent by the OPC server to the
toolbox, for items whose values change. UpdateRate and DeadbandPercent
define how often the items must be queried for a new value, and whether

all value changes or only changes of a specified magnitude are sent to the
toolbox. For more information on Subscription, see “Data Change Events and
Subscription” on page 4-12.

By observing the data for a while, you will see that the three signals appear
to have similar ranges. This indicates that you can visualize the data in the
same axes when you plot it in Step 11.

Example: Basic OPC Toolbox™ Acquisition Procedure

You can also use the Group Read/Write pane for writing values to many
items simultaneously. Specify a value in the Write column of the Item
data table for each item you want to write to, and click Write, to be able to
write to those items.

In Step 10 you will configure a logging task and log data for the three items.

Command-Line Equivalent

You can use the read function with a group object as the first parameter to
read values from all items in a group. The read function is discussed in more
detail in “Reading and Writing Data” on page 4-2.

Step 9: Configure Group Properties for Logging

Now that your dagroup object contains items, you can use the group to control
the interaction of those items with the server. In this step, you configure the
group to log data from those items for 2 minutes at 0.2-second intervals. You
will use the logged data in Step 11 to visualize the signals produced by the
Matrikon Simulation Server.

OPC Data Access Servers provide access only to "live" data (the last known
value of each server item in their name space). In many cases, a single value
of a signal is not useful, and a time series containing the signal value over a
period of time is helpful in analyzing that signal or signal set. OPC Toolbox
software allows you to log all items in a group to disk or memory, and to
retrieve that data for analysis in MATLAB.

You configure a logging session using the dagroup object. By modifying the
properties associated with logging, you control how often the data must be
sent from the server to the client, how many records the group must log, and
where to log the data. This information is summarized in the Logging pane
of the dagroup object properties in the GUI.

2-23

2 Quick Start: Using the OPC Tool GUI

Select the Logging tab in the Properties pane. The following figure shows
the Logging pane for the dagroup object created in this example.

Groupl
Praperties | Reactite Logging |
Update rate: ID.S s Specrfy upduie‘
L rate and duration
Murnber of records to log; |1 20 [Minimum logging durstion: 60.0s) Of quil’lg iﬂSI(.
Destinstion o |
(* Memary Disk " Disk and Memary Sm(ify qued
File name: |opcdatalog.o|f Broyvse | —dﬂh deshnuhon
opfions.
" Append T Oversvrite. @ Index
—
Export to workspace options Plat options]

Plot tems in

" Structure Variable name: I uiLogData 1
c— ' Same axes Specrfy dﬂh
& Array Diatatype: ICE" Vl " Separate axes (subplot) — cxport and PIO'
behavior.
Wariable Mames... | [Mk bad quality

¥ Mark repeat gquality

Start | 0% Stop (ontrol logging task

Recards available: 0 Fitizh | _— nd perform data

export/visualization.
& Useallrecords (Uselast |1D recards Export | Flat |

Example of Logging Pane for Data Access Group Obijects

Using the Logging pane, configure the logging session using the following
steps:

1 Set Update rate to 0.2.

2 Set Number of records to log to 600. Because you want to log for
2 minutes (120 seconds) at 0.2-second update rates, you need 600 (i.e.,
120/0.2) records.

You can leave the rest of the logging properties at their default values,
because this example uses data logged to memory.

In Step 10 you log the data. In Step 11 you will visualize the data.

2-24

Example: Basic OPC Toolbox™ Acquisition Procedure

Command-Line Equivalent

You use the set function to set OPC Toolbox object properties. From the
MATLAB command line, you can calculate the number of records required
for the logging task.

logDuration = 2*60;

logRate = 0.2;

numRecords = ceil(logDuration./logRate)

set(grp, 'UpdateRate',logRate, 'RecordsToAcquire',numRecords);

Step 10: Log OPC Server Data

In Step 9 you configured the dagroup object’s logging properties. Your object
1s now ready to log the required amount of data to memory.

Click Start in the Logging tab. The logging task will begin, and the OPC
Toolbox software engine will receive and store the data from the OPC server.
The progress bar indicates the status of the logging task, as shown in the
following figure.

et I 29% Stop
Records available: 35 Flush |
{* Usze allrecords © Use last I'ID recoris Export | Plat |

Example of Logging Task in Progress

Note The logging task occurs in the background. You can continue working
in MATLAB while a logging task is in operation. The logging task is not
affected by any other computation taking place in MATLAB, and MATLAB is
not blocked from processing by the logging task.

Wait for the task to complete before continuing with Step 11.

Command-Line Equivalent

You use the start function with the required dagroup object to start a
logging task.

2-25

2 Quick Start: Using the OPC Tool GUI

2-26

start(grp)

Although the logging operation takes place in the background, you can
instruct MATLAB to wait for the logging task to complete, using the wait
function.

wait(grp)

Step 11: Plot the Data

In this introductory example, you use the GUI to visualize the data logged
in Step 10. In a more complex task, you would export the logged data to the
workspace and use MATLAB functions to analyze and interpret the logged
data.

When the logging task stops, the Logging pane will update to show that the
task is complete. An example of the logging status portion of the Logging
pane after a completed task is shown in the following figure.

st | I |
Records available: 120 Flush I

{* Usealrecords { Use last |1D records Export I Plat |

Example of Logging Pane After Logging has Completed

To view the data from the GUI, click Plot. The logged data will be retrieved
from the toolbox engine and displayed in a MATLAB figure window. The
format of the displayed data and annotation options are controlled by settings
in the Plot options frame of the Logging pane. By default, the plot will

be annotated with any data points that have a Quality other than Good.
Values whos Quality is Bad are annotated with a large red circle with a black
border, and Values with Quality of Repeat are annotated with a yellow star.
You should always view the Quality returned with the Value of an item to
determine if the Value is meaningful or not. The relationship between the
Value and Quality of an item is discussed in “Understanding OPC Data:
Value, Quality, and TimeStamp” on page 5-2.

Example: Basic OPC Toolbox™ Acquisition Procedure

An example of the plotted data is shown in the next figure.

J. Figure 1 _I- _ID ll
N

File Edit Wew Insert Tools Desktop ‘Window Help

Ded& hfams || 0E oo

200 F i

L I 5T
Saw-tocthed Waves. Reald)
Triangle Waves. Heald i
Triangle Waves. Ulnt2

160 -

Quality of this 140 _
value is 'Repeat’ 20
(repeated data) I
100
80
Quality of this aoll
value is 'Bad’

4] LA
002 0503 004

Example of Data Plot from a Logging Task

Note Your plotted data will almost certainly not look like the one shown here,
because the logging task was executed at a different time.

Notice how the three signals seem almost completely unrelated, except for the
period of the two Real8 signals. The peak values for each signal are different,
as are the periods for the two Triangle Waves signals. By visualizing the
data, you can gain some insight into the way the Matrikon OPC Simulation
Server simulates each tag. In this case, it is apparent that Real8 and UInt2
signals have a different period.

Command-Line Equivalent

When your logging task has completed you transfer data from the toolbox
engine to the MATLAB workspace using the getdata function, which provides

2-27

2 Quick Start: Using the OPC Tool GUI

2-28

two types of output, depending on the 'datatype’ argument. For more
information see getdata in the reference pages. In this case you retrieve the
data into separate arrays, and plot the data.

The example below reproduces the figure display that you get when you click
Plot.

[logIDs, logVal, logQual, logTime, logEvtTime] = ...
getdata(grp, 'double’);

plot(logTime, logVal);

axis tight

datetick('x', 'keeplimits')

legend(logIDs)

Step 12: Clean Up

When you are finished with an OPC task, you should remove the task objects
from memory and clear the MATLAB workspace of the variables associated
with these objects. The OPC Tool GUI will automatically delete all objects
that it creates from the toolbox engine. If you work only in the OPC Tool GUI,
you do not need to perform any further cleanup other than to close the GUI.
You close the GUI by using the Exit option in the File menu, or by using the
Close button in the title bar. You will be prompted to save the OPC Tool
session. You can choose to save the session to an OPC Session File (.osf file)
for later use, or exit without saving.

Command-Line Equivalent

When you use OPC Toolbox objects from the MATLAB command line, or from
your own functions, you must remove them from the OPC Toolbox software
engine using the delete function. Note that when you delete a toolbox object,
the children of that object are automatically removed from the toolbox engine.
In the following example, there is no need to delete grp and itm, as they

are children of da.

disconnect(da)
delete(da)

clear da grp itm
close(gcf)

Example: Basic OPC Toolbox™ Acquisition Procedure

OPC Toolbox object management is discussed in more detail in “Deleting
Objects” on page 3-23.

2-29

2 Quick Start: Using the OPC Tool GUI

2-30

Using OPC Toolbox Objects

To interact with an OPC server, you need to create toolbox objects. You create
an OPC Data Access Client (opcda client) object to provide a connection to

a particular OPC server. You then create one or more Data Access Groups
(dagroup objects) to control sets of Data Access Items (daitem objects), which
represent links to server items. OPC Toolbox objects are described in more
detail in “Understanding the OPC Toolbox Object Hierarchy” on page 1-6.

This chapter describes how to create and configure toolbox objects to interact
with an OPC server. Chapter 4, “Reading, Writing, and Logging OPC Data”
provides information on how to use the OPC Toolbox objects to exchange data
with an OPC server.

e “Creating OPC Toolbox Objects” on page 3-2

¢ “Configuring OPC Toolbox Object Properties” on page 3-17

® “Deleting Objects” on page 3-23

e “Saving and Loading Objects” on page 3-25

3 Using OPC Toolbox™ Obijects

Creating OPC Toolbox Objects

In this section...

“Overview” on page 3-2

“Creating Data Access Group Objects” on page 3-2

“Creating Data Access Item Objects” on page 3-5

“Building an Object Hierarchy with a Disconnected Client” on page 3-8
“Creating OPC Toolbox Object Vectors” on page 3-9

“Working with Public Groups” on page 3-12

Overview

The first step in interacting with an OPC server from MATLAB software is to
establish a connection between the server and OPC Toolbox software. You
create opcda client objects to control the connection between an OPC server
and the toolbox. Then you create dagroup objects to manage sets of daitem
objects, and then you create the daitem objects themselves, which represent

server items. A server item corresponds to a physical device or to a storage
location in a SCADA system or DCS.

You must create the toolbox objects in the order described above. “Connecting
to OPC Servers” on page 1-21 describes how to create an opcda client object.
This section discusses how to create and configure dagroup and daitem
objects.

Creating Data Access Group Objects

Once you have created an opcda client object, you can add groups to the client.
A dagroup object manages multiple daitem objects. Using a dagroup object,
you can read data from all items in that group in one action, write data to
the items in the group, define actions to take when any of the items in that
group change value, or log data for all the items in that group for analysis
and processing.

To create a dagroup object, you use the addgroup function, specifying the
opcda client object that you want to add the group to, and an optional group

Creating OPC Toolbox™ Obijects

name. See “Specifying a Group Name” on page 3-3 for rules on defining your
own group name.

The example below creates an opcda client object, connects that object to the
server, and adds two groups to the client. The first group is automatically
named by the server, and the second group is given a specified name.

da = opcda('localhost', 'Matrikon.OPC.Simulation.1');
connect(da);

grp1 = addgroup(da);

grp2 = addgroup(da, 'MyGroup');

Specifying a Group Name

Every OPC server requires that each group created by the client has a
unique name. This allows the OPC server to uniquely identify the group
when a client makes a server request using that group. The name can be
any nonempty string.

You do not need to specify a group name for each group that you add to a
client. If you do not specify a name, the OPC server will automatically assign
a group name for you. Each OPC server defines different rules for automatic
naming of groups.

If you attempt to create a group with the same name as a group already
created for that client, an error will be generated.

See “Deleting Objects” on page 3-23 for information about how groups are
automatically named when you create groups with a disconnected client.

Viewing a Summary of a Group Object

To view a summary of the characteristics of the dagroup object you created,
enter the variable name you assigned to the object at the command prompt.
For example, this is the summary for the object grp1.

grp1

3-3

3 Using OPC Toolbox™ Obijects

3-4

grpl =
summary of OPC Data Access Group Object: Groupo
Object Parameters

Group Type ! private
Item v D-by-1 daitem object
Parent i localhost /Matrikon .OPC, Simulation. i
Update Rate : 0.5
Deadband Lo0%
{:) oObject Status
Active Loon
Subscription : on
Logging v off
{:) Logging Parameters
Records L 120
Duration v at least G0 seconds
Logging to Lomemory
Status ¢ Waiting for START.

0 records available for GETDATA/SPEEKDATA

The items in this list correspond to the numbered elements in the object
summary:

1 The title of the Summary includes the name of the dagroup object. In the
example, this is the server-assigned name GroupO.

2 The Object Parameters section lists the values of key dagroup object
properties. These properties describe the type of group, the daitem objects
associated with the group, the name of the group’s parent opcda client
object, and properties that control how the server updates item information
for this group. In the example, any items created in this group will be
updated at half-second intervals, with a deadband of 0%. For information
on how the server updates item information, see “Data Change Events and
Subscription” on page 4-12.

3 The Object Status section lists the current state of the object. A dagroup
object can be in one of several states:

e The Active state defines whether any operation on the group applies
to the item.

¢ The Subscription state defines whether changes in the item’s value or
quality will produce a data change event. See “Data Change Events and
Subscription” on page 4-12 for more information about the Subscription
property.

Creating OPC Toolbox™ Obijects

® The Logging state describes whether the group is logging or not. See
“Logging OPC Server Data” on page 4-17 for information on how to log
data.

4 The Logging Parameters section describes the values of the logging
properties for that group. Logging properties control how the dagroup
object logs data, including the duration of the logging task and the
destination of logged data. See “Logging OPC Server Data” on page 4-17 for
information on logging data using dagroup objects.

Using a Group Obiject
A dagroup object with no items does not perform any useful functions. Once
you have added items to a group, you can use the group to

® Read data from, and write data to, the OPC server. See “Reading and
Writing Data” on page 4-2 for more information.

¢ Control how an OPC server notifies MATLAB about changes in any
item associated with a dagroup object. See “Data Change Events and
Subscription” on page 4-12 for more information.

¢ Log data from all items in that group, for later processing and analysis.
“Logging OPC Server Data” on page 4-17 describes how to control logging.

Creating Data Access ltem Objects

A dagroup object provides a container for collecting one or more daitem
objects. A daitem object provides a link to a specific server item. The daitem
object defines how you want to retrieve and store the client-side value of the
server item, and also stores the last data retrieved from the server for that
server item. You can use a daitem object to read data from the server for that
server item, or to write values to that server item on the server.

You create a daitem object using the additem function, specifying the dagroup
object to which the item must be added and the fully qualified item ID of the
server item. You can obtain a list of the fully qualified item IDs for all server
items using the serveritems function.

The example below builds on the example in “Creating Data Access Group
Objects” on page 3-2 by adding a daitem object to the first group created

3 Using OPC Toolbox™ Obijects

3-6

in that example. The server item associated with this item is called
‘Random.Real8"'.

itm1 = additem(grp1, ‘Random.Real8');

Specifying a Local Data Type for the ltem

When you create a daitem object, you create an object that stores the value of
the server item locally on the client. You can specify that the local storage
data type be different from the server storage data type. For example, you can
specify that a value stored on the server as an integer be stored in MATLAB
as a double-precision floating-point value, because you know that you will be
performing double-precision calculations with that item’s value.

Although it is possible to modify the data type of the item after it is created,
you can also create an item with a specific data type by specifying the

data type as the third parameter to the additem function. The data type
specification must be a string describing that data type. Valid OPC data
types are any MATLAB numeric data type, plus 'char', and 'logical'. See
“Working with Different Data Types” on page 5-18 for more information on
supported data types.

The example below adds another item to the group grp1 created by the
example in “Creating Data Access Group Objects” on page 3-2. The item
ID is 'Random.UInt2', which is stored on the server as an unsigned 16-bit
integer. By specifying the data type as 'double’, the value will be returned
to MATLAB and stored locally as a double-precision floating-point number.

itm2 = additem(grpi1, 'Random.UInt2', 'double');

Note The conversion process from the server’s data type to the item’s data
type is performed by the server, using Microsoft COM Variant conversion
rules. If you attempt to convert a value to a data type that does not have that
value’s range, the OPC server will return an error when attempting to update
the value of that item. You should then change the data type to one that has
the same or larger range than the server item’s data type. See “Working with
Different Data Types” on page 5-18 for more information.

Creating OPC Toolbox™ Obijects

Specifying the Active Status of an ltem Object

You can optionally specify the Active status of an daitem object by passing a
string as the fourth parameter to the additem function. The Active status
can be 'on' or 'off'. An item with an Active status of 'off' behaves as if
the item was never created: No server updates of the item’s value will take
place, and a read or write with that item will fail. You use the Active status
to temporarily disable an item without deleting that item from MATLAB.
For more information on the Active status, see the reference page for the
Active property.

Viewing a Summary of the ltem Object

To view a summary of the characteristics of the daitem object you created,
enter the variable name you assigned to the object at the command prompt.
For example, this is the summary for the object itm1.

itm1

itml =
8 summary of OPC Data Access Item Object: Random.Reals
Object Parameters
Parent ! Groupo
Access Rights @ read
@ Object Status

Active Loon
@ Data Parameters
Data Type v double
value &
Quality v Bad: out of Service
Timestamp i DB-Mar-zood 10:32:23

The items in this list correspond to the numbered elements in the object
summary:

1 The title of the Summary includes the fully qualified item ID of the item. In
the example, the item is associated with the 'Random.Real8' server item.

2 The Object Parameters section lists the values of key daitem object
properties. These properties describe the name of the item’s Parent group,
and the Access Rights advertised by the server.

3-7

3 Using OPC Toolbox™ Obijects

3-8

3 The Object Status section lists the Active state of the object. The Active
state defines whether any operation on the parent group applies to the item,
and whether you want to be notified of any changes in the item’s value.

4 The Data Parameters section lists the Data Type used by the daitem
object to store the value, and the Value, Quality, and TimeStamp of the
last value obtained from the server for this item. For more information on
the Value, Quality, and TimeStamp of an item, see “Understanding OPC
Data: Value, Quality, and TimeStamp” on page 5-2.

Using an Item Object

You create a daitem object to query the value of the associated server item, or
to write values to that server item. You can write values to a single item, and
read values from a single item, using the daitem object. For more information
on reading and writing values, see “Reading and Writing Data” on page 4-2.

You can also use the parent dagroup object to read and write values for all
of the daitem objects contained in that group, or to log changes in the item’s
value for a period of time. See “Logging OPC Server Data” on page 4-17 for
information on logging data.

Building an Object Hierarchy with a Disconnected
Client

When you create objects with a connected client, OPC Toolbox software
validates those objects with the OPC server before creating them on the
client. For example, when adding a group to the client using the addgroup
function, the validation process ensures that no other group with the same
name exists on the server, and that the server will accept the group. When
adding an item, the item ID is verified to be a valid server item.

Occasionally you may wish to build up a toolbox object hierarchy without
connecting to the server. For example, you may be off site and wish to
configure a logging task for use on the following day, rather than wait to
configure the objects for that task when you are on site.

OPC Toolbox software allows you to configure an entire toolbox object
hierarchy without connecting to the server. However, without a connection to
the server, the toolbox cannot validate the created objects with that server.

Creating OPC Toolbox™ Obijects

Instead, OPC Toolbox software will perform some basic validation on the
objects you create, and revalidate those objects with the server when you
connect to the server.

When you create toolbox objects with a disconnected client, the following
validation is performed:

e When adding a group using the addgroup function, if you do not specify
a name, OPC Toolbox software automatically assigns a unique name
"groupN', where N is the lowest integer that ensures that the group name
1s unique. For example, the first group created will be 'group1’', then
'group2', and so on.

e When you specify a group name when using the addgroup function, an
error will be generated if a group with the same name already exists.

¢ When adding an item to a group using the additem function, an error will
be generated only if an item with the same name already exists in that
group. No other checking is performed on the item.

® When adding an item to a group, if you do not specify a data type for that
item, the data type is set to 'unknown'. When you connect to the server,
the data type will be changed to the server item’s CanonicalDataType.

Despite all of the checks described above, the server may not accept all
objects created on a disconnected client when that client is connected to the
server using the connect function. For example, an item’s item ID may not
be valid for that server, or a group name may not be valid for that server.
When you connect a client to the server using connect, any objects that the
server rejects will be deleted from the object hierarchy, and a warning will
be generated. In this way, all objects on a connected client are guaranteed
to have been accepted by the server.

Creating OPC Toolbox Object Vectors

OPC Toolbox software supports the use of object vectors. An object vector is
a single variable in the MATLAB workspace containing a reference to more
than one object. For example, all the groups added to an opcda client object
are stored in the client’s Group property. The Group property contains a
dagroup object vector that represents all groups in that client. Similarly,

3-9

3 Using OPC Toolbox™ Obijects

3-10

a dagroup object has an Item property that contains a reference to every
daitem object created in the group.

You can construct vectors using any of the standard concatenation techniques
available in MATLAB. However, OPC Toolbox software imposes some
limitations on the construction of object vectors:

® Objects must be the same class. For example, you can concatenate two
dagroup objects, but you cannot concatenate a dagroup object with a
daitem object.

® Group and item objects must have the same parent.

® One of the dimensions of the resulting array must be scalar. You can create
a column vector (m-by-1 objects) or a row vector (1-by-n objects), but not an
m-by-n matrix.

® OPC Toolbox software does not fill in missing elements in a vector. Instead,
an error is generated. For example, you cannot assign a scalar object at the
4th index to a scalar object.

The following sections discuss how to create and use toolbox object vectors:
® “Constructing Object Vectors” on page 3-10 describes how to create object

vectors.

* “Displaying a Summary of Object Vectors” on page 3-11 describes how
object vectors are displayed at the command line.

e “Using Object Vectors” on page 3-12 describes how you can use object
vectors with OPC Toolbox software.

Constructing Object Vectors
You can construct an object vector using any of the following techniques:

¢ Using concatenation of lists of individual object variables
¢ Using indexed assignment

¢ Using object properties to retrieve object vectors

Creating OPC Toolbox™ Obijects

Creating object vectors using concatenation. To construct an OPC
Toolbox object vector using concatenation, you use the normal MATLAB
syntax for concatenation. Create a list of all objects you want to create, and
surround that list with square brackets ([]1). Separate each element of the
object vector by either a comma (,) to create a row vector, or a semicolon (;) to
create a column vector.

The following example creates three fictitious opcda client objects, and
concatenates them into a row vector.

dal = opcda('Host1', 'Dummy.Server.1');

da2 = opcda('Host2', 'Dummy.Server.2');
da3 = opcda('Host3', 'Dummy.Server.3');
dav = [dal, da2, da3];

Creating object vectors using indexed assignment. Indexed assignment
refers to creating vectors by assigning elements to specific indices in the
vector. The following example constructs the same three-element opcda client
object vector as in the previous example, using indexed assignment.

dav(1) = opcda('Host1', 'Dummy.Server.1');
dav(2) = opcda('Host2', 'Dummy.Server.2');
dav (3) opcda('Host3', 'Dummy.Server.3"');

Creating object vector using object properties. You may obtain an object
vector if you assign the Group property of a opcda client object, or the Item
property of a dagroup object, to a variable. If the client has more than one
group, or the group has more than one item, the resulting property is an
object vector.

For information on obtaining object properties, see “Viewing the Value of a
Particular Property” on page 3-19.

Displaying a Summary of Object Vectors

To view a summary of an object vector, type the name of the object vector at
the command prompt. For example, this is the summary of the client vector
dav.

dav =

3-11

3 Using OPC Toolbox™ Obijects

3-12

OPC Data Access Object Array:

Index: Status: Name:

1 disconnected Host1/Dummy.Server.1
2 disconnected Host2/Dummy.Server.2
3 disconnected Host3/Dummy.Server.3

The summary information for each OPC Toolbox object class is different.
However, the basic display is similar.

Using Object Vectors

You use object vectors just as you would a normal object variable. The
function you call with the object vector simply gets applied to all objects in
the vector. For example, passing the client vector dav to the connect function
connects each object in the vector to its OPC server.

Note Some OPC Toolbox functions do not accept object vectors as arguments.
If you attempt to use an object vector with a function that does not accept
object vectors, an error will be generated. Consult the relevant function
reference page for information on whether a function supports object vectors.

If you need to extract elements of an object vector, use standard MATLAB
indexing notation. For example, the following example extracts the second
element from the client vector dav.

dax = dav(2);

Working with Public Groups

The OPC Data Access Specification provides a mechanism for sharing group
configuration amongst many clients. Normally, a client has private access to a
group; no other client connected to the same server can see that group, and
the items configured in that group. However, a client can define a group as
public, allowing other clients connected to the same server to gain access to
that group.

Creating OPC Toolbox™ Obijects

Note The OPC Data Access Specification defines the support for public groups
as optional. Consequently, some OPC servers will not support public groups.

A public group differs from a private group in the following ways:

® Once a group is defined as public, you cannot add items to that group, nor
remove items from the group. This restriction ensures that every client
using that public group has access to the same items, and does not need to
worry about items being added or removed from that group. You should
ensure that a group’s items are correct before making that group public.

e Each client that accesses the public group is able to set its own group
properties, such as the UpdateRate, DeadbandPercent, Active, and
Subscription properties. For example, one client can define an
UpdateRate of 10 seconds for a public group, while another client specifies
the UpdateRate as 2 seconds.

e Each public group defined on a server must have a unique name. If you
attempt to create a public group with a name that is the same as a public
group on the server, an error is generated.

® A single client cannot have a public group and a private group with the
same name. For example, you cannot connect to a public group named
"LogGroup' and then create a private group called 'LogGroup'.

Using OPC Toolbox software, you can define and publish your own public
groups or connect to existing public groups. You an also request that public
groups be removed from an OPC server. The following sections illustrate how
you can work with public groups using OPC Toolbox software:

® “Defining a New Public Group” on page 3-14 describes how you can create
new public groups.

* “Connecting to an Existing Public Group” on page 3-14 describes how you
can utilise a public group that is already defined on the server.

¢ “Removing Public Groups from the Server” on page 3-16 describes how you
can remove public groups from an OPC server.

3-13

3 Using OPC Toolbox™ Obijects

3-14

Defining a New Public Group

You define a new public group by creating a private group in the normal way
(described in “Creating Data Access Group Objects” on page 3-2) and then
converting that private group into a public group.

You use the makepublic function to convert a private group into a public
group. The only argument to the makepublic function is the group object that
you want to convert to a public group.

The following example creates a private group, with specific items in that
group. The group is then converted into a public group.

da = opcda('localhost', 'My.Server.1');

grp = addgroup(da, 'PublicGrpExample');

itms = additem(grp, {'Item.ID.1', 'Item.ID.2'});
makepublic(grp);

You can check the group type using the GroupType property.
get(grp, 'GroupType')
ans =

public

Connecting to an Existing Public Group

In addition to creating new public groups, you can also create a connection

to an existing public group on the server. To obtain a list of available public
groups on a server, you use the opcserverinfo function, passing the client
object that is connected to the server as the argument. The returned structure
includes a field called 'PublicGroups', containing a cell array of public
groups defined on that server. If the 'PublicGroups' field is empty, then you
should check the 'SupportedInterfaces' field to ensure that the server
supports public groups. A server that supports public groups will implement
the IOPCServerPublicGroups interface.

Once you have a list of available public groups, you can create a connection to
that group using the addgroup function, passing it the client that is connected
to the server containing the public group, the name of the public group, and
the 'public' group type specifier.

Creating OPC Toolbox™ Obijects

Note You cannot create a connection to an existing public group if your client
object is disconnected from the server.

The following example connects to a public group named 'PublicTrends' on
the server with program ID 'My.Server.1'.

da = opcda('localhost', 'My.Server.1');
connect(da);
pubGrp = addgroup(da, 'PublicTrends', 'public');

When you connect to a public group, the items in that group are automatically
created for you.

itm get(pubGrp, 'Items');

itm
OPC Item Object Array:

Index: DataType: Active: ItemID:

1 double on item.id.1
2 uinti6 on item.id.2
3 double on item.id.3

You cannot add items to or remove items from a public group. However, you
can still modify the update rate of the group, the dead band percent, and the
active and subscription status of the group, and you can use the group to read,
write, or log data as you would for a private group.

When you have finished using a public group, you can use the delete function
to remove that group from your client object. Deleting the group from the
client does not remove the public group from the server; other clients might
require that group after you have finished with it. Instead, deleting the
group from the client indicates to the server that you are no longer interested
in the group.

3-15

3 Using OPC Toolbox™ Obijects

3-16

Removing Public Groups from the Server

You can request that a public group be removed from a server using the
removepublicgroup function, passing the client object that is connected to
the server and the name of the public group to remove.

Caution The OPC Data Access Specification does not provide any security
mechanism for removing public groups; any client can request that a public
group be removed. You should use this function with extreme caution!

If any clients are currently connected to that group, the server will issue a
warning stating that the group will be removed when all clients have finished
using the group.

Configuring OPC Toolbox™ Object Properties

Configuring OPC Toolbox Object Properties

In this section...

“Purpose of Object Properties” on page 3-17

“Viewing the Values of Object Properties” on page 3-18
“Viewing the Value of a Particular Property” on page 3-19
“Getting Information About Object Properties” on page 3-19
“Setting the Value of an Object Property” on page 3-20
“Viewing a List of All Settable Object Properties” on page 3-21

Purpose of Object Properties

All OPC Toolbox objects support properties that enable you to control
characteristics of the object:

* The opcda client object properties control aspects of the connection to the
OPC server, and event information obtained from the server. For example,
you can use the Timeout property to define how long to wait for the server
to respond to a request from the client.

* The dagroup object properties control aspects of the collection of items
contained within that group, including all logging properties. For example,
the UpdateRate property defines how often the items in the group must be
checked for value changes, as well as the rate at which data will be sent
from the server during a logging session.

® The daitem object properties control aspects of a single server item. For
example, you use the DataType property to define the data type that the
server must use to send values of that server item to the OPC Toolbox
software.

For all three toolbox objects, you can use the same toolbox functions to

® View a list of all the properties supported by the object, with their current
values

® View the value of a particular property

3-17

3 Using OPC Toolbox™ Obijects

® Get information about a property

® Set the value of a property

Viewing the Values of Object Properties

To view all the properties of an OPC Toolbox object, with their current values,

use the get function.

If you do not specify a return value, the get function displays the object
properties in categories that group similar properties together. You use the
display form of the get function to view the value of all properties for the

toolbox object.

This example uses the get function to display a list of all the properties of

the OPC dagroup object grp.

get(grp)

3-18

General Settings:

DeadbandPercent = 0
GroupType = private

Item = []

Name = groupi

Parent = [1x1 opcdal]
Tag =

TimeBias = 0

Type = dagroup
UpdateRate = 0.5000
UserData = []

Callback Function Settings:

CancelAsyncFcn = @opccallback
DataChangeFcn = []
ReadAsyncFcn = @opccallback
RecordsAcquiredFcn = []
RecordsAcquiredFcnCount = 20
StartFcn = []

StopFcn = []

WriteAsyncFcn = @opccallback

Configuring OPC Toolbox™ Object Properties

Subscription and Logging Settings:
Active = on
LogFileName = opcdatalog.olf
Logging = off
LoggingMode = memory
LogToDiskMode = index
RecordsAcquired = 0
RecordsAvailable
RecordsToAcquire
Subscription = on

0
120

Viewing the Value of a Particular Property

To view the value of a particular property of an OPC Toolbox object, use the
get function, specifying the name of the property as an argument. You can
also access the value of the property as you would a field in a MATLAB
structure.

This example uses the get function to retrieve the value of the Subscription
property for the dagroup object.

get(grp, 'Subscription')
ans =
on

This example illustrates how to access the same property by referencing the
object as if it were a MATLAB structure.

grp.Subscription
ans =

on

Getting Information About Object Properties

To get information about a particular property, you can view the reference
page for the property in Chapter 9, “Functions — Alphabetical List”. You can
also get information about a particular property at the command line by using
the propinfo or opchelp functions.

3-19

3 Using OPC Toolbox™ Obijects

3-20

The propinfo function returns a structure that contains information about
the property, such as its data type, default value, and a list of all possible
values if the property supports such a list. This example uses propinfo to
get information about the LoggingMode property.

propinfo(grp, 'LoggingMode ")
ans =

Type: 'string'
Constraint: 'enum'
ConstraintValue: {'memory' ‘'disk' 'disk&memory'}
DefaultValue: 'memory'
ReadOnly: 'whilelogging'

The opchelp function returns reference information about the property with
a complete description. This example uses opchelp to get information about
the LoggingMode property.

opchelp(grp, 'LoggingMode ")

Setting the Value of an Object Property

To set the value of a particular property of an OPC Toolbox object, use the set
function, specifying the name of the property as an argument. You can also
assign the value to the property as you would a field in a MATLAB structure.

Note Because some properties are read-only, only a subset of the toolbox
object properties can be set. Use the property reference pages or the propinfo
function to determine if a property is read-only.

This example uses the set function to set the value of the LoggingMode
property.

set(grp, 'LoggingMode', 'disk&memory")
To verify the new value of the property, use the get function.

get(grp, 'LoggingMode’)

Configuring OPC Toolbox™ Object Properties

ans =
disk&memory

This example sets the value of a property by assigning the value to the object
as if it were a MATLAB structure.

grp.LoggingMode = 'disk’;
grp.LoggingMode

ans =

disk

Viewing a List of All Settable Object Properties

To view a list of all the properties of a toolbox object that can be set, use the
set function.

set(grp)
General Settings:

DeadbandPercent
Name

Tag

TimeBias
UpdateRate
UserData

Callback Function Settings:
CancelAsyncFcn: string -or- function handle -or- cell array
DataChangeFcn: string -or- function handle -or- cell array
ReadAsyncFcn: string -or- function handle -or- cell array
RecordsAcquiredFcn: string -or- function handle -or- cell array
RecordsAcquiredFcnCount
StartFcn: string -or- function handle -or- cell array
StopFcn: string -or- function handle -or- cell array
WriteAsyncFcn: string -or- function handle -or- cell array

Subscription and Logging Settings:

Active: [{on} | off]
LogFileName

3-21

3 Using OPC Toolbox™ Obijects

LoggingMode: [{memory} | disk | disk&memory]

LogToDiskMode: [{index} | append | overwrite]
RecordsToAcquire
Subscription: [{on} | off]

When using the set function to display a list of settable properties, all
properties that have a predefined set of acceptable values list those values
after the property. The default value is enclosed in curly braces ({}). For
example, from the display shown above, you can set the Subscription
property for a dagroup object to 'on' or 'off', with the default value being
'on'. You can set the LogFileName property to any value.

Special Read-Only Modes

Some OPC Toolbox object properties change their read-only status, depending
on the state of an object (defined by another property of that object, or the
parent of that object). The toolbox uses two special read-only modes:

e 'whileConnected': These properties cannot be changed while the client
is connected to the OPC server. For example, the client’s Host property is
read-only while connected.

e 'whilelLogging': These properties cannot be changed while the dagroup
object is logging. For example, the LoggingMode property is read-only
while logging. For more information on logging, see “Logging OPC Server
Data” on page 4-17.

e 'whilePublic': These properties cannot be changed because the group is a
public group. For more information on public groups, see “Working with
Public Groups” on page 3-12.

Note Properties that modify their read-only state are always displayed
when using set to display settable properties, even when they cannot be
changed because of the state of the object.

To determine if a property has a modifiable read-only state, use the propinfo
function.

3-22

Deleting Obijects

Deleting Objects

When you finish using your OPC Toolbox objects, use the delete function
to remove them from memory. After deleting them, clear the variables
that reference the objects from the MATLAB workspace by using the clear
function.

Note When you delete an opcda client object, all the group and item objects
associated with the opcda client object are also deleted. Similarly, when you
delete a dagroup object, all daitem objects associated with that dagroup

object are deleted.

To illustrate the deletion process, this example creates several opcda client
objects and then deletes them.

Step 1: Create several clients

This example creates several opcda client objects using fictitious host and
server ID properties.

dat
da2
da3

opcda('Host1', 'Dummy.Server.1');
opcda('Host2', 'Dummy.Server.2');
opcda('Host3', 'Dummy.Server.3');

Step 2: Delete clients

Always remove toolbox objects from memory, and the variables that reference
them, when you no longer need them.

You can delete toolbox objects using the delete function.

delete(dal)
delete(da2)
delete(dal)

Note that the variables associated with the objects remain in the workspace.

whos

3-23

3 Using OPC Toolbox™ Obijects

Name Size Bytes Class

dai 1x1 636 opcda object
da2 1x1 636 opcda object
da3 1x1 636 opcda object

These variables are not valid OPC Toolbox objects.

isvalid(da1l)

ans =
0

To remove these variables from the workspace, use the clear command.

Note You can delete toolbox object vectors using the delete function. You
can also delete individual elements of a toolbox object vector.

3-24

Saving and Loading Obijects

Saving and Loading Objects

Using the save command, you can save an OPC Toolbox object to a MAT-file,
just as you would any workspace variable. This example saves the dagroup
object grp to the MAT-file myopc.mat.

save myopc grp

When you save a toolbox object, all the toolbox objects in that object hierarchy
are also saved. For example, if you save a dagroup object, the client, all
groups associated with that client and all items created in those groups are
saved along with the dagroup object. However, only those objects you elect to
save will be created in the MATLAB workspace. Other objects will be created
with no reference to them in the workspace. To obtain a reference to an
existing OPC Toolbox object, use the opcfind function.

To load a toolbox object that was saved to a MAT-file into the MATLAB
workspace, use the 1oad command. For example, to load grp from MAT-file
myopc.mat, use

load myopc

Note The values of read-only properties are not saved. When you load a
toolbox object into the MATLAB workspace, read-only properties revert back
to their default values. To determine if a property is read-only, use the
propinfo function or see Chapter 11, “Properties — Alphabetical List”.

3-25

3 Using OPC Toolbox™ Obijects

3-26

Reading, Writing, and
Logging OPC Data

The core of any OPC Toolbox software application is the exchange of data
between the MATLAB workspace and one or more OPC servers. You create
and configure toolbox objects to support the reading, writing, and data logging
functions that you require for your application.

Using OPC Toolbox software you can exchange data with an OPC server

in a number of ways. You can read and write data from the MATLAB
command line or other MATLAB functions. You can configure toolbox objects
to automatically run MATLAB code when the server notifies the objects that
data has changed on the server. You can also log changes in OPC server data
to a disk file or to memory, for further analysis.

This chapter provides information on how to exchange data with an OPC
server.

® “Reading and Writing Data” on page 4-2

® “Data Change Events and Subscription” on page 4-12

® “Logging OPC Server Data” on page 4-17

4 Reading, Writing, and Logging OPC Data

4-2

Reading and Writing Data

In this section...

“Introduction” on page 4-2

“Reading Data from an Item” on page 4-2

“Writing Data to an Item” on page 4-6

“Reading and Writing Multiple Values” on page 4-8

Introduction

Using OPC Toolbox software, you can exchange data with the OPC server
using individual items, or using the dagroup object to perform the operation
on multiple items. The reading and writing operation can be performed
synchronously, so that your MATLAB session will wait for the operation to
complete, or asynchronously, allowing your MATLAB session to continue
processing while the operation takes place in the background.

Reading Data from an Iltem

You can read data from any item that is associated with a connected client.
When you perform the read operation on an item, the server will return
information about the server item associated with that item ID. The read
operation can be performed synchronously or asynchronously:

¢ “Using Synchronous Read Operations” on page 4-2 describes how to
perform synchronous read operations. Synchronous read operations can
request data from the server’s cache, or directly from the device.

¢ “Using Asynchronous Read Operations” on page 4-5 describes how to
perform asynchronous read operations.

Using Synchronous Read Operations

A synchronous read operation means that MATLAB will wait for the server
to return data from a read request before continuing processing. The data
returned by the server can come from the server’s cache, or you can request
that the server read values from the device that the server item refers to.

Reading and Writing Data

You use the read function to perform synchronous read operations, passing
the daitem object associated with the server item you want to read. If the
read operation is successful, the data is returned in a structure containing
information about the read operation, including the value of the server item,
the quality of that value, and the time that the server obtained that value.
The item’s Value, Quality and Timestamp properties are also updated to
reflect the values obtained from the read operation.

The following example creates an opcda client object and configures a group
with one item, 'Random.Real8'. A synchronous read operation is then
performed on the item.

da = opcda('localhost', 'Matrikon.OPC.Simulation.1');
connect(da);

grp = addgroup(da);

itm1 = additem(grp, 'Random.Real8');

r = read(itmit)

ItemID: 'Random.Real8'
Value: 4.3252e+003
Quality: 'Good: Non-specific'
TimeStamp: [2004 3 2 9 50 26.6710]
Error: '

Specifying the Source of the Read Operation. By default, a synchronous
read operation will return data from the OPC server’s cache. By reading from
the cache, you do not have to wait for a possibly slow device to provide data
to the server. You can specify the source of the synchronous read operation
as the second parameter to the read function. If the source is specified as
'device', the server will read a value from the device, and return that value
to you (as well as updating the server cache with that value).

Note Reading from the device may be slow. If the read operation generates a
time-out error, you may need to increase the value of the Timeout property of
the opcda client object associated with the group or item in order to support
synchronous reads from the device.

4-3

4 Reading, Writing, and Logging OPC Data

The following example reads data from the device associated with itm1.

r read(itmi1, 'device')

ItemID: 'Random.Real8'
Value: 9.1297e+003
Quality: 'Good: Non-specific'
TimeStamp: [2004 3 2 10 8 20.2650]
Error: '

Reading from the Cache with Inactive Items. In order to reduce
communication traffic and speed up data access, OPC servers do not store all
server item values in their cache. Only those server items that are active will
be stored in the server cache. Therefore, synchronous read operations from
the cache on an inactive item will return data that may not correspond to the
current device value. If you attempt to read data from an inactive item using
the read function, and do not specify 'device' as the source, the Quality will
be set to 'Bad: Out of Service'.

You control the active status of an item using the Active property.

The following example sets the Active property of the item to 'off' and
attempts to read from the cache.

itmi1.Active = 'off';
r = read(itmt)

Warning: One or more items is inactive.
(Type "warning off opc:read:iteminactive" to suppress this
warning.)

ItemID: 'Random.Real8'
Value: 8.4278e+003
Quality: 'Bad: Out of Service'
TimeStamp: [2004 3 2 10 17 19.9370]
Error: '

4-4

Reading and Writing Data

Using Asynchronous Read Operations

An asynchronous read operation creates a request to read data, and then
sends that request to the server. Once the request has been accepted,
MATLAB continues processing the next instruction without waiting to receive
any values from the server. When the data is ready to be returned, the server
sends the data back to MATLAB by generating a read async event. MATLAB
will handle that event as soon as it is able to perform that task.

Asynchronous read operations always return data from the device.

By using an asynchronous read operation, you can continue performing tasks
in MATLAB while the value is being read from the device, and then process
the returned value when the server is able to provide it back to MATLAB.

You perform asynchronous read operations using the readasync function,
passing the daitem object that you want to read from. If successful, the
function will return a transaction ID, a unique identifier for that asynchronous
transaction. You can use that transaction ID to identify the read operation
when it is returned through the read async event.

When an asynchronous read operation is processed in MATLAB, the item’s
Value, Quality and Timestamp properties are also updated to reflect the
values obtained from the asyncrhonous read operation.

The following example of using an asynchronous read operation uses the
default callback for a read async event. The default callback is set to the
opccallback function, which displays information about the event in the
command line.

tid

readasync(itm1)

tid

The transaction ID for this operation is 3. A little while later, the default
callback function displays the following information at the command line.

OPC ReadAsync event occurred at local time 10:44:49
Transaction ID: 3

4-5

4 Reading, Writing, and Logging OPC Data

4-6

Group Name: GroupO
1 items read.

You can change the read async event callback function by setting the
ReadAsyncFcn property of the dagroup object. For more information on
callbacks and events, see Chapter 6, “Using Events and Callbacks”.

Writing Data to an ltem

You can write data to individual items, or to groups of items. This section
describes how to write data to individual items. See “Reading and Writing
Multiple Values” on page 4-8 for information on using dagroup objects to
write data to multiple items.

You can write data to an OPC server using a synchronous write operation,
in which case MATLAB will wait for the server to acknowledge that the
write operation succeeds, or using an asynchronous write operation, in which
case MATLAB is free to continue performing other tasks while the write
operation takes place. Because write operations always apply directly to the
device, a synchronous write operation may take a significant amount of time,
particularly if the device that you are writing to has a slow connection to
the OPC server.

Using Synchronous Write Operations

You use the write function to perform synchronous write operations. The
first argument is the daitem object that represents the server item you want
to write to. The second argument is the value that you want to write to that
server item. The write function does not return any results, but will generate
an error if the write operation is not successful.

The following example creates an item with item ID 'Bucket Brigade.Real8'
and writes the value 10.34 to the item. The value is then read using a
synchronous read operation.

itm2 = additem(grp, 'Bucket Brigade.Real8');
write(itm2, 10.34)
r = read(itm2, 'device')

You do not need to ensure that the data type of the value you are writing,
and the data type of the daitem object, are the same. OPC Toolbox software

Reading and Writing Data

relies on the server to perform the conversion from the data type you provide,
to the data type required for that server item. For information on how the
toolbox handles different data types, see “Working with Different Data Types”
on page 5-18.

Using Asynchronous Write Operations

An asynchronous write operation creates a request to write data, and then
sends that request to the server. Once the request has been accepted,
MATLAB continues processing the next instruction without waiting for the
data to be written. When the write operation completes on the server, the
server notifies MATLAB that the operation completed by generating a write
async event containing information on whether the write operation succeeded,
and an error message if applicable. MATLAB will handle that event as soon
as it is able to perform that task.

You use the writeasync function to write values to the server asynchronously.
The first argument is the daitem object that represents the server item you
want to write to. The second argument is the value you want to write to that
server item. The return value is the transaction ID of the operation. You can
use the transaction ID to identify the write operation when it is returned
through the write async event.

The following example uses asynchronous operations to write the value 57.8
to the item 'Bucket Brigade.Real8' created earlier.

tid

writeasync(itm2, 57.8)

tid

A while later, the standard callback (opccallback) will display the results of
the write operation to the command line.

OPC WriteAsync event occurred at local time 11:15:27
Transaction ID: 4
Group Name: GroupO
1 items written.

4-7

4 Reading, Writing, and Logging OPC Data

4-8

You can change the write async event callback function by setting the
WriteAsyncFcn property of the dagroup object. For more information on
events and callbacks, see Chapter 6, “Using Events and Callbacks”.

Reading and Writing Multiple Values

When you use the read and write operation on a single daitem object, you
read or write a single value per transaction. OPC Toolbox software allows you
to perform one operation to read multiple item values, or to write multiple
values. You can also use a dagroup object to read and write values using all
items in the group, or you can perform read and write operations on item
object vectors.

A daitem object vector is a single variable in the MATLAB workspace
containing more than one daitem object. You can construct item vectors
using any of the standard concatenation techniques available in MATLAB.
See “Creating OPC Toolbox Object Vectors” on page 3-9 for information on
creating and working with toolbox object vectors.

When you perform any read or write operation on a dagroup object, it is the
equivalent of performing the operation on the Item property of that group,
which 1s a daitem object vector representing all items that are contained
within the dagroup object.

The following sections describe how to perform read and write operations
on multiple items:

e “Reading Multiple Values” on page 4-8 describes how to read multiple
values from an item vector or dagroup object.

e “Writing Multiple Values” on page 4-10 describes how to write multiple
values to an item vector or dagroup object.

e “Error Handling for Multiple Item Read and Write Operations” on page
4-10 explains how OPC Toolbox software deals with errors when performing
read and write operations on multiple objects.

Reading Multiple Values

The following sections describe how synchronous read operations and
asynchronous read operations behave for multiple items.

Reading and Writing Data

Synchronous Read Operations. When you read multiple values using the
read function, the returned value will be a structure array. Each element of
the structure will contain the same fields. One of the fields is the item ID that
the information in that element of the structure refers to.

The following example performs a synchronous read operation on the dagroup
object created in the previous examples in this section.

S
1}

read(grp)

2x1 struct array with fields:
ItemID
Value
Quality
TimeStamp
Error

To display the first record in the structure array, use indexing into the
structure.

r(1)

ItemID: 'Random.Real8'
Value: 3.7068e+003
Quality: 'Good: Non-specific'
TimeStamp: [2004 3 2 11 49 52.5460]
Error: '

To display all values of a particular field, you can use the list generation

syntax in MATLAB. Enclosing that list in a cell array groups the values into
one variable.

{r.value}
ans =

{3.7068e+003 10}

4-9

4 Reading, Writing, and Logging OPC Data

4-10

Asynchronous Read Operations. When you read multiple values using
the readasync function, the return value is still a single transaction ID. The
multiple values will be returned in the read async event structure passed to
the ReadAsyncFcn callback. For information on the structure of the read
async event, see “Event Types” on page 6-5.

Writing Multiple Values

When you perform a write operation on multiple items you need to specify
multiple values, one for each item you are writing to. OPC Toolbox software
requires these multiple values to be in a cell array, since the data types for
each value may be different. For information on constructing cell arrays,
see MATLAB Programming.

Note Even if you are using the same data type for every value being written
to the dagroup object or daitem object vector, you must still use a cell array to
specify the individual values. Use the num2cell function to convert numeric
arrays to cell arrays.

The following example writes values to a dagroup object containing two items.

write(grp, {1.234, 5.43})

Error Handling for Multiple Item Read and Write Operations
When reading and writing with multiple items, an error generated by
performing the operation on one item will not automatically generate an
error in MATLAB. The following rules apply to reading and writing with
multiple items:

e [f all items fail the operation, an error will be generated. The error message
will contain specific information for each item about why the item failed.
¢ If some items fail but some succeed, the operation does not error, but

generates a warning, listing which items failed and the reason for failure.

Note that for asynchronous read and write operations, items may fail
early (during the request for the operation) or late (when the information

Reading and Writing Data

is returned from the server). If any items fail late, an error event will be
generated in addition to the read async event or write async event.

4-11

4 Reading, Writing, and Logging OPC Data

4-12

Data Change Events and Subscription

In this section...

“Introduction” on page 4-12
“Configuring OPC Toolbox Objects for Data Change Events” on page 4-12
“How OPC Toolbox Software Processes Data Change Events” on page 4-15

“How to Customize the Data Change Event Response” on page 4-15

Introduction

Using the read and readasync functions described in “Reading Data from

an Item” on page 4-2, you can obtain information about OPC server it